HomeMy WebLinkAboutCampus Park South Sump Remediation Study
CCIITTYY OOFF BBAAKKEERRSSFFIIEELLDD
PPUUBBLLIICC WWOORRKKSS DDEEPPAARRTTMMEENNTT
CCAAMMPPUUSS PPAARRKK SSOOUUTTHH SSUUMMPP
RREEMMEEDDIIAATTIIOONN SSTTUUDDYY
PPrreeppaarreedd JJuunnee 2222,,22001111
Page 1 of 7
REPORT FOR
CITY OF BAKERSFIELD PUBLIC WORKS DEPARTMENT
CAMPUS PARK SOUTH SUMP REMEDIATION STUDY
PURPOSE: The purpose of this study is to investigate the existing sump located in Campus Park South as to
adequacy of capacity in particular regard to its current operation as a decorative pond. While the
original sole purpose of the basin was to operate as a retention basin for storm water, the
community surrounding the Campus Park South area has expressed serious concerns in regard to
City forces cleaning and draining the existing sump. Therefore, the City desires to find a practical and cost effective solution for the operation of the sump. The City desires to maintain an esthetic
pond and still utilize the basin for effective storm water storage.
SCOPE:
Original scope of the study is outlined as follows: 1. Meet with City Staff to determine study parameters and goals.
2. Review Storm Drain Facilities and Log Drain Inlet Locations.
3. Summarize Drainage Subarea Runoff volumes utilizing City Standards for runoff factors.
4. Determine volumes of the existing sump, above and below the pond water surface. (Final
pond water surface may be lower and in different configuration than present.) 5. Study new geometries for adding volume to the sump.
6. Prepare detailed drainage study to determine flow rates.
7. Utilizing data from item 6, prepare a hydrograph analysis and pumped routing analysis.
8. Prepare an analysis to determine the event year that the current storage is effective.
9. Develop alternative preliminary/schematic designs. 10. Prepare budgetary cost estimates for the alternative designs.
11. Prepare exhibits that illustrate the alternative designs.
12. Prepare letter report with recommendations.
13. Provide two separate soils borings and logs, 35 feet deep.
14. Provide permeability analysis in accordance with City Standards.
APPROACH:
Based on the above scope, four alternatives were developed:
Alternate No. 1 – This alternate explored the possibility of utilizing a portion of the park to the west to provide shallow storm water storage. Excavation would be such as to limit the depth of water to
be no greater than 18 inches. This concept allows the storm water to overfill the existing sump area
and flood the westerly portion of the park. Some modification to the existing sump would be
required along its west edge.
Alternate No. 2a – This alternative utilizes a pump station to dispose of excess storm water into the
existing 39” sanitary sewer located in Pin Oak Park Boulevard.
Alternate No. 2b – This alternative investigates the possibility of disposing excess storm water into
the 39” sewer as in Alternate 2a, but investigates the possibility of gravity flow.
Page 2 of 7
Alternate No. 3 – This alternate changes the moderately mild sump side slopes running about an
average of ten horizontal units to one vertical unit (10:1) to four to one (4:1) to gain additional
volume within the confines of the existing sump boundary.
Alternate No. 4 – This alternate develops a complementary retention basin and storm drain that provides the additional required volume and conveys the water via a new storm drain. The new
sump would be located on the north side of White lane just west of Pin Oak Park Boulevard and
within an existing PG&E tower line easement. A right of way document or property purchase will
need to be obtained from the underlying property owner.
Other Alternates Considered But Not Pursued – The use of subterranean basins was considered.
This method of storm water disposal essentially consists of building underground basins utilizing
prefabricated structural domes in which to store the water. Permeable beds are built under the
domes that connect to existing permeable soil strata. The stored water then eventually infiltrates into
the underlying soils. This alternate was not pursued as permeable soils were not discovered above 16 feet in depth. In addition these soils were marginally adequate. Therefore, it was determined that
pursuit of this alternative was not merited.
INVESTIGATION:
This study reviewed the original drainage study dated 6/18/81 prepared by JTB (no RCE signature or seal). Summarizing all of the areas and respective runoff coefficients, we determined the
following:
Average Rational C Area, acres 10 year volume AF, City Standard 10 year volume AF, NOAA Atlas 2
100 year volume AF, City Standard 100 year volume AF, NOAA Atlas 2
0.455 344.38 16.62 17.20 23.52 25.35
After review of the study and final zoning in place, revisions to the C values were applied to adjust
to current City standards. The most significant revision was the C value used for the R-1 developed
areas. The original study utilized 0.35. After reviewing the average lot size, which was about 7000
SF, this C value was adjusted to 0.40. The corresponding updated values are as follows:
Average Rational
C
Area,
acres
10 year volume
AF, City Standard
10 year volume
AF, NOAA Atlas 2
100 year volume
AF, City Standard
100 year volume
AF, NOAA Atlas 2
0.477 346.21 17.51 18.12 24.78 26.71
The NOAA volumes are shown for City Staff’s consideration, as technically, the City standard falls
a little short of the 100 year volume (1.8 inches vs. 1.93 inches).
Reviewing the existing sump and system geometry, it was found that the lowest inlet governing the
maximum water surface elevation is located at Hillyer Way and Alden Court. The top of catch basin
was measured at elevation 354.68. Gutter flow line is then estimated to be 354.1. Allowing 1 foot
freeboard then sets the maximum sump water surface at 353.1. This study used 353.0. The
following values were then derived:
Page 3 of 7
1. Maximum total volume of sump: 25.15 AF
2. Volume below pond max. water surface (elev. 350): 16.94 AF
3. Volume above pond water surface: 8.21 AF
4. Rainfall amount on watershed to fill 8.21AF: 0.60 inches
5. Event for 24 hour storm: 0.71 year
After the above investigation was completed the defined alternates were studied.
Alternate No. 1 Under Alternate No.1, the sump and park would be modified as follows:
1. Lower the pond to approximately elevation 344.0. About 19.27 AF of storage would be
available above the pond to the maximum elevation of 353.0.
2. Then add overflow area in the park to the west of the sump with a maximum depth of 18
inches. Approximately 3.76 AF of storage would be added. This would bring the total to 23.03 AF.
3. Excavate the mild slope on the westerly edge of the sump between the revised pond water
surface and the fence line to a new level bench set at elevation 344.0 then slope up at 4:1 to
the new 18 inch depth sump bottom. This would add another 2.09 AF of storage. The total
storage would then be adequate at 25.12 AF.
The revised pond surface (elev. 344.0) would be about 52% of the original area. The lowered pond
water surface applies to all of the alternate designs. This lower water surface could be enhanced a
little by excavating the side slopes along the pond edge. Architectural features could be added such
as boulders and cobbles. It may be necessary to add a very small over-pour structure that would assure that the pond never exceeds the 344 elevation due to nuisance water. In addition and at the
request of the Director, a large emergency over-pour should be provided so that flooding of homes
near the lowest inlet will be remediated in case sump capacity is exceeded. Both over-pours would
pipe to the sewer. The fence line should be reestablished on its original position. Creating the 18
inch deep sump will require the removal and replanting of the smaller trees, reestablishment of the turf and irrigation system and vertical relocation of the light standards with elevated sonotube
foundations. A subterranean drain system would probably also be needed to help drain the 18 inch
sump as quickly as possible.
Additional survey information for the western portion of the park was performed so that the proposed grades and capacity for the 18 inch sump could be verified.
Alternate No. 2a
This alternate considers a lift station that would route drainage water above the 353.0 elevation in
the existing sump without enlarging the sump area. Approximately 5.40 AF (1.76 million gallons) would need disposal to the sewer during the 100 year event. After detention basin studies were
performed the following was determined:
1. The lift station would be equipped with a 15 HP pump capable of pumping 3.33 CFS under
a total lift of 17.5 feet. A second pump would be required for redundancy.
2. Maximum flow into the sewer would be 3.92 CFS. The 39” sewer has a capacity of 20.2 CFS, so this system would require about 20% of the pipe’s capacity.
3. This alternate still requires a pond level at no greater than elevation 344.0.
Page 4 of 7
Since a pump station is involved in this alternate, specific control of when the pumps are shutoff
can be developed. This would allow about 19.3 Acre feet to remain in the sump and allow it to
empty through infiltration. Deterministic volume would be 7.44 acre feet per year. In addition and
at the request of the Director, a large emergency over-pour should be provided so that flooding of
homes near the lowest inlet will be remediated in case sump capacity is exceeded. The over-pour would pipe to the sewer.
Alternate No. 2b
As in Alternate No. 2a this alternate also delivers excess storm water to the 39” sewer, but does so
under gravity flow. After studying Alternate No. 2a, it was discovered that there is adequate grade to gravity flow to the sewer. The alternate would require a calibrated over pour weir structure that
dumps immediately to the sewer. The maximum flow to the sewer would be 5.04 CFS and would
require the disposal volume of 5.40 AF. It would also require a greater capacity reserve in the 39”
sewer of about 27% of the pipe’s capacity.
This alternate would have no control on emptying the sump and would drain down completely to
the pond water surface elevation. Deterministic volume is 88.8 acre feet per year.
Alternate No. 3
This alternate would excavate the existing sump bank area for about three quarters of the sump perimeter in the same fashion as described in Alternate No.1. The entire volume requirement could
be contained within the current fence alignment. The available volume would be 25.09 AF at
elevation 353.0. The pond elevation is set at 344.0. A small spill device to the sewer is
recommended here as well. In addition and at the request of the Director, a large emergency over-
pour should be provided so that flooding of homes near the lowest inlet will be remediated in case sump capacity is exceeded. Both over-pours would pipe to the sewer. Some nice trees would need
to be removed and replaced higher up on the bank and closer to the fence. If this option is pursued,
36” box trees would need to be specified for replacement. An alternate section is shown on the
sketch which would significantly enlarge the size of the pond. Instead of a level shelf at 344.0 the
shelf would be sloped to allow the pond surface to expand to the 4:1 slope. Perhaps some boulders and cobbles could enhance and define the pond edge.
Alternate No. 4
This alternate would provide a complementary sump located on the north side of White Lane in an
existing tower line easement. The sump volume required is a minimum of 5.4 acre feet. In order for this volume to be effective, the maximum water surface must match that of the Campus South Park
Sump maximum water surface at elevation 353.0. The 5.4 acre feet of storage must fall below that
elevation and be no lower than the planned pond elevation of 344.0. A storm drain would be
installed and tie-in on the existing Pin Oak Park Boulevard drain between Carvalho Court and
Heely Court and follow Bellows Avenue to Kilterbury Lane and across Whit Lane to the sump location. The pipe would be set on a minimum slope of 0.1%. This tie-in will allow the two sumps
to float on the same water surface. A calculated flow of 42 CFS will require a 36” pipe size. The
original ground surface is much higher at the proposed sump location, about elevation 361 to 362,
and thus will require much larger than normal excavation for a typical sump. This is the only
alternate that does not require actual construction in the park itself.
Page 5 of 7
Right of Way Purchase – Arnold Ramming and Don Anderson, both with City Staff, assisted in the
development of the right of way cost. Mr. Anderson estimated the value to be approximately $0.50
per square foot. Mr. Anderson commented that the current owner - Castle & Cooke - would
probably sell the property to the City, but only if we take the entire parcel, which would be full
width of the parcel and then the full length from White Lane to Persimmon Drive. Castle &
Cooke’s reason for this would most likely be towards reducing their ownership responsibility on a
parcel that has no true value for them. Mr. Ramming added that with the excess acquisition, the City
would have several choices 1) make the retention basin larger than needed for the Campus Park
South issue so that we have more options in the area, and/or 2) construct a material storage yard,
which is something Mike Connor recently expressed some interest in doing in this general vicinity;
develop another small community park similar to the one at South Laurelglen Boulevard. The dollar
amount for this acquisition is then estimated to be $70,000 [660 feet X 204 feet X $0.50 per sf =
67,320 rounded up to nearest ten thousand to account for incidental costs].
CONCLUSION AND RECOMMENDATIONS:
All the alternate designs are feasible solutions. Therefore, basically two factors can be used to rank
the alternatives. 1) The cost of the project and associated capitalized operation and maintenance
costs and 2) A value placed on esthetics. While it is impossible to equate esthetics to monetary
value, a ranking has been provided to assist the City in the selection of the best alternate design.
Alternate Construction
Cost
Capitalized
Operation and
Maintenance
Costs
Total Cost Esthetics
Rank
Esthetic Issues
1 527,327 54,909582,2365 The park would get flooded for
events greater than the 14 year
event. Cleanup would be significant
and a significant inconvenience to
the use of the park could occur.
2a 372,001 107,048479,0493 Visual change and impact to the
park would be minimal. A lift
station can cause operational and
odor issues.
2b 272,428 752,7091,025,1372 Visual change and impact to the
park would be minimal. Some safety
concerns would need addressing for
the weir structure.
3 414,580 27,455442,0344 The appearance of the sump will
change with steeper side slopes.
Some nice trees will be lost.
Significant impact to the existing
animals and plants would occur.
4 702,934 20,591723,5241 No visual or other impacts to the
park.
Page 6 of 7
Based on the above summary, Alternate No. 3 is the most economic alternate. But this alternate
probably has the second highest impact on the park. Therefore, it must be noted that the best
solution, while not the most economic, is Alternate No. 4. Alternate No. 4 would better provide
assurance of providing adequate storage for the Campus Park South area along with avoiding any
significant changes to Campus Park South. A new sump would also provide for better infiltration, thus this is our recommendation.
Respectfully Submitted,
Richard Meyer, RCE 28104
Meyer Civil Engineering, Inc.
12
39
39
39
Re
v
.
N
o
.
D
a
t
e
R
e
v
i
s
i
o
n
D
e
s
c
r
i
p
t
i
o
n
A
p
p
r
o
v
e
d
B
y
OF
SHEET NO.
Da
t
e
Dra
w
n
B
y
:
PM
:
Au
t
o
C
A
D
F
i
l
e
:
Da
t
e
:
File
N
o
:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Ph
o
n
e
6
6
1
-
8
3
6
-
9
8
3
4
F
A
X
6
6
1
-
8
3
6
-
9
7
6
1
11
0
S
.
M
o
n
t
c
l
a
i
r
S
t
.
,
S
t
e
.
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Me
y
e
r
1
4
CI
T
Y
O
F
B
A
K
E
R
S
F
I
E
L
D
CA
M
P
U
S
P
A
R
K
S
O
U
T
H
SU
M
P
S
T
U
D
Y
-
A
L
T
E
R
N
A
T
E
1
RD
M
RD
M
CO
B
1
1
0
0
4
D
S
1
CO
B
-
1
1
-
0
0
4
6/2
2
/
1
1
Ric
h
a
r
d
D
.
M
e
y
e
r
R
C
E
2
8
1
0
4
N
PI
N
O
A
K
P
A
R
K
B
L
V
D
.
CARVALHO
C
O
U
R
T
DISTRICT BLV
D
.
HASSAM DR.
TI
L
Y
A
R
D
C
T
.
SITE PLAN - ALTERNATE 1
SECTION A-A
41
EXIST. BANK POND SURFACE
@ ELEV. 344.0
FE
N
C
E
L
I
N
E
A
A
REVISE SLOPE TO 4:1
AND CONSTRUCT
BENCH ON WEST SIDE
REVISED SUMP & OVERFLOW
AREA CAPACITY AVAILABLE:
25.12 AF @ W.S. ELEV. 353.0
REMOVE AND REPLACE
TREES AS NEEDED
OVERFLOW AREA
EXCAVATE 18"
BENCH
MAX. POND
ELEV. 344.0
4:1 EX
I
S
T
.
4
2
"
S
.
D
.
EX
I
S
T
.
3
6
"
S
.
D
.
EXIST. 42" S.D.
MAX. W.S.
ELEV. 353.0
CONSTRUCT EMERGENCY
OVER-POUR STRUCTURE
12
39
39
39
Re
v
.
N
o
.
D
a
t
e
R
e
v
i
s
i
o
n
D
e
s
c
r
i
p
t
i
o
n
A
p
p
r
o
v
e
d
B
y
OF
SHEET NO.
Da
t
e
Dra
w
n
B
y
:
PM
:
Au
t
o
C
A
D
F
i
l
e
:
Da
t
e
:
File
N
o
:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Ph
o
n
e
6
6
1
-
8
3
6
-
9
8
3
4
F
A
X
6
6
1
-
8
3
6
-
9
7
6
1
11
0
S
.
M
o
n
t
c
l
a
i
r
S
t
.
,
S
t
e
.
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Me
y
e
r
2
4
CI
T
Y
O
F
B
A
K
E
R
S
F
I
E
L
D
CA
M
P
U
S
P
A
R
K
S
O
U
T
H
RD
M
RD
M
CO
B
1
1
0
0
4
D
S
1
CO
B
-
1
1
-
0
0
4
6/2
2
/
1
1
Ric
h
a
r
d
D
.
M
e
y
e
r
R
C
E
2
8
1
0
4
N
PI
N
O
A
K
P
A
R
K
B
L
V
D
.
CARVALH
O
C
O
U
R
T
DISTRICT BL
V
D
.
HASSAM DR
.
TI
L
Y
A
R
D
C
T
.
SITE PLAN - ALTERNATE 2
SUMP TO REMAIN AS IS
ALTERNATE 2a
CONSTRUCT LIFT STATION
TO DISPOSE 5.40 AF TO 39"
SEWER FOR 100 YR EVENT
ALTERNATE 2b
CONSTRUCT OVER POUR
STRUCTURE TO DISPOSE
24.8 AF TO 39" SEWER FOR
100 YR EVENT
EXIST. 39" TRU
N
K
S
E
W
E
R
EX
I
S
T
.
4
2
"
S
.
D
.
EX
I
S
T
.
3
6
"
S
.
D
.
EXIST. 42" S.D.
12
39
39
39
Re
v
.
N
o
.
D
a
t
e
R
e
v
i
s
i
o
n
D
e
s
c
r
i
p
t
i
o
n
A
p
p
r
o
v
e
d
B
y
OF
SHEET NO.
Da
t
e
Dra
w
n
B
y
:
PM
:
Au
t
o
C
A
D
F
i
l
e
:
Da
t
e
:
File
N
o
:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Ph
o
n
e
6
6
1
-
8
3
6
-
9
8
3
4
F
A
X
6
6
1
-
8
3
6
-
9
7
6
1
11
0
S
.
M
o
n
t
c
l
a
i
r
S
t
.
,
S
t
e
.
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Me
y
e
r
3
4
CI
T
Y
O
F
B
A
K
E
R
S
F
I
E
L
D
CA
M
P
U
S
P
A
R
K
S
O
U
T
H
SU
M
P
S
T
U
D
Y
-
A
L
T
E
R
N
A
T
E
3
RD
M
RD
M
CO
B
1
1
0
0
4
D
S
1
CO
B
-
1
1
-
0
0
4
6/2
2
/
1
1
Ric
h
a
r
d
D
.
M
e
y
e
r
R
C
E
2
8
1
0
4
N
PI
N
O
A
K
P
A
R
K
B
L
V
D
.
CARVALHO
C
O
U
R
T
DISTRICT BLV
D
.
HASSAM DR.
TI
L
Y
A
R
D
C
T
.
SITE PLAN - ALTERNATE 3
SECTION A-A
41
EXIST. BANK
ROCK AND
COBBLE EDGE
POND SURFACE
@ ELEV. 344.0
FE
N
C
E
L
I
N
E
REVISE SLOPE TO 4:1 SLOPE TO REMAIN
UNDISTURBED IF
STEEPER THAN 4:1
REVISED SUMP CAPACITY AVAILABLE:
25.09 AF @ W.S. ELEV. 353.0
REMOVE AND REPLACE
TREES AS NEEDED
EX
I
S
T
.
4
2
"
S
.
D
.
EX
I
S
T
.
3
6
"
S
.
D
.
EXIST. 42" S.D.
A
A
MAX. POND
ELEV. 344.0
CONSTRUCT EMERGENCY
OVER-POUR STRUCTURE
Re
v
.
N
o
.
D
a
t
e
R
e
v
i
s
i
o
n
D
e
s
c
r
i
p
t
i
o
n
A
p
p
r
o
v
e
d
B
y
OF
SHEET NO.
Da
t
e
Dra
w
n
B
y
:
PM
:
Au
t
o
C
A
D
F
i
l
e
:
Da
t
e
:
File
N
o
:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Ph
o
n
e
6
6
1
-
8
3
6
-
9
8
3
4
F
A
X
6
6
1
-
8
3
6
-
9
7
6
1
11
0
S
.
M
o
n
t
c
l
a
i
r
S
t
.
,
S
t
e
.
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Me
y
e
r
4
4
CI
T
Y
O
F
B
A
K
E
R
S
F
I
E
L
D
CA
M
P
U
S
P
A
R
K
S
O
U
T
H
SU
M
P
S
T
U
D
Y
-
A
L
T
E
R
N
A
T
E
4
RD
M
RD
M
CO
B
1
1
0
0
4
D
S
1
CO
B
-
1
1
-
0
0
4
6/2
2
/
1
1
Ric
h
a
r
d
D
.
M
e
y
e
r
R
C
E
2
8
1
0
4
PIN OAK PARK BLVD.
SITE PLAN - ALTERNATE 4
WH
I
T
E
L
N
.
KILTERBURY LN.
BE
L
L
O
W
S
A
V
E
.
CONSTRUCT NEW 36"
DRAIN TO NEW SUMP
NEW SUMP CAPACITY AVAILABLE:
6.00 AF @ W.S. ELEV. 353.0
TOTAL SYSTEM CAPACITY AVAILABLE:
24.8 AF @ W.S. ELEV. 353.0
368'
20
4
'
EXISTING
TOWER LINE
EASEMENT
INVERT ELEV. 346.0
CA
R
V
A
L
H
O
C
T
.
HE
E
L
Y
C
T
.
CAMPUS PARK SOUTH SUMP
PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011
Feature:ALTERNATE 1 - Excavate Sump into Park on West File:
Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS
1.Mobilization 1LS30600.0030,600
2.Clearing and Grubbing 3.1 AC1000.003,100
3.Grading11616CY5.0058,080
4.Tree Replacement41EA500.0020,500
5.Reinstall Lights and Electrical2EA4000.008,000
6.Reinstall Fence and Curb355LF40.0014,200
7.Reseed or Replace Turf & Irrigation System3.1 AC55000.00170,500
8.Emergency Over-pour Structure to 39" Sewer 1LS92000.0092,000
9.SWPPP1LS8000.008,000
10.Handling of Geese and Turtles1LS5000.005,000
11.Dust Control Plan1LS3000.003,000
SUBTOTAL:412,980
12.Contingency:15%61,947
SUBTOTAL CONSTRUCTION ITEMS:474,927
13.Design Engineering:1LS38000
14.Construction Inspection:1LS14400
SUBTOTAL ENGINEERING ITEMS:52,400
TOTAL PROJECT:527,327
Period,
YearsInterest Rate
Item No.Item Description405%TOTALS
Annual Operation and Maintenance
1.Cleanup of Park after Major Rain - Labor 1280 21,964
2.Cleanup of Park after Major Rain - Equipment 1920 32,945
54,909
TOTAL:582,236
`
Annual Cost Present Worth
Meyer Civil Engineering, Inc.
110 S. Montclair St #104, Bakersfield, CA 93309 Page 1 of 5 ALT1
PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011
Feature:ALTERNATE 2a - Install Lift Station and Pump to Sewer File:
Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS
1.Mobilization 1LS20800.0020,800
2.Clearing and Grubbing 0.25 AC2000.00500
3.Electrical Installation1LS25000.0025,000
4.Lift Station1LS175000.00175,000
5.New Manhole on Sewer 1LS12000.0012,000
6.Discharge Line to Sewer 95LF325.0030,875
7.SWPPP1LS8000.008,000
8.Handling of Geese and Turtles1LS5000.005,000
9.Dust Control Plan1LS3000.003,000
SUBTOTAL:280,175
10.Contingency:15%42,026
SUBTOTAL CONSTRUCTION ITEMS:322,201
11.Design Engineering:1LS25800
12.Construction Inspection:1LS24000
SUBTOTAL ENGINEERING ITEMS:49,800
TOTAL PROJECT:372,001
Period,
YearsInterest Rate
Item No.Item Description405%TOTALS
Annual Operation and Maintenance
1.
Cleanup of Pump Station after Major Rain -
Labor64010,982
2.Exercise Pump Station192032,945
3.Electric Costs33572
4.City Flow Surcharge Costs (7.44 AF per Year)364562,548
107,048
TOTAL:479,049
`
Annual Cost
Present
Worth
Meyer Civil Engineering, Inc.
110 S. Montclair St #104, Bakersfield, CA 93309 Page 2 of 5 ALT2a
PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011
Feature:ALTERNATE 2b - Install Overpour Structure and Pipe to Sewer File:
Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS
1.Mobilization 1LS15100.0015,100
2.Clearing and Grubbing 0.25 AC2000.00500
3.New Pond Control Structure 1LS92000.0092,000
4.New Manhole on Sewer 1LS12000.0012,000
5.Discharge Line to Sewer 95LF750.0071,250
6.SWPPP1LS8000.008,000
7.Handling of Geese and Turtles1LS5000.005,000
SUBTOTAL:203,850
8.Contingency:15%30,578
SUBTOTAL CONSTRUCTION ITEMS:234,428
9.Design Engineering:1LS18800
10.Construction Inspection:1LS19200
SUBTOTAL ENGINEERING ITEMS:38,000
TOTAL PROJECT:272,428
Period,
YearsInterest Rate
Item No.Item Description405%TOTALS
Annual Operation and Maintenance
1.Cleanup of Structure after Major Rain - Labor3205,491
4.City Flow Surcharge Costs (88.8 AF per Year)43547747,218
752,709
TOTAL:1,025,137
`
Annual Cost
Present
Worth
Meyer Civil Engineering, Inc.
110 S. Montclair St #104, Bakersfield, CA 93309 Page 3 of 5 ALT2b
PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011
Feature:ALTERNATE 3 - Excavate Existing Sump to Steeper Side slopes File:
Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS
1.Mobilization 1LS23600.0023,600
2.Clearing and Grubbing 2.3 AC1000.002,300
3.Grading11616CY5.0058,080
4.Emergency Over-pour Structure to 39" Sewer 1LS92000.0092,000
5.Tree Replacement8EA1000.008,000
6.Reinstall Fence and Curb1240LF40.0049,600
7.Pond Landscaping (4:1 Slope)1.25 AC55000.0068,750
8.SWPPP1LS8000.008,000
9.Handling of Geese and Turtles1LS5000.005,000
10.Dust Control Plan1LS3000.003,000
SUBTOTAL:318,330
11.Contingency:15%47,750
SUBTOTAL CONSTRUCTION ITEMS:366,080
12.Design Engineering:1LS29300
13.Construction Inspection:1LS19200
SUBTOTAL ENGINEERING ITEMS:48,500
TOTAL PROJECT:414,580
Period,
YearsInterest Rate
Item No.Item Description405%TOTALS
Annual Operation and Maintenance
1.Annual Maintenance of Sump - Labor 640 10,982
2.Annual Maintenance of Sump - Equipment96016,473
27,455
TOTAL:442,034
`
Annual Cost
Present
Worth
Meyer Civil Engineering, Inc.
110 S. Montclair St #104, Bakersfield, CA 93309 Page 4 of 5 ALT3
PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011
Feature:ALTERNATE 4 -Construct New Sump and Storm Drain File:
Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS
1.Mobilization 1LS36300.0036,300
2.Clearing and Grubbing 2.3 AC1000.002,300
3.Grading, New Sump26400CY4.00105,600
4.36" Storm Drain1270LF200.00254,000
5.Manholes4EA4500.0018,000
6.Outlet Structure1LS12000.0012,000
7.Repair Sewer Laterals 6EA500.003,000
8.Sump Fence and Curb1145LF42.0048,090
9.SWPPP1LS8000.008,000
10.Dust Control Plan1LS3000.003,000
SUBTOTAL:490,290
11.Contingency:15%73,544
SUBTOTAL CONSTRUCTION ITEMS:563,834
12.Design Engineering:1LS45100
13.Construction Inspection:1LS24000
SUBTOTAL ENGINEERING ITEMS:69,100
14.Right of Way Purchase1LS70000
SUBTOTAL R/W ITEMS:70,000
TOTAL PROJECT:702,934
Period,
YearsInterest Rate
Item No.Item Description405%TOTALS
Annual Operation and Maintenance
1.Annual Maintenance of Sump - Labor 480 8,236
2.Annual Maintenance of Sump - Equipment720 12,355
20,591
TOTAL:723,524
`
Annual Cost
Present
Worth
Meyer Civil Engineering, Inc.
110 S. Montclair St #104, Bakersfield, CA 93309 Page 5 of 5 ALT4
Ca
m
p
u
s
P
a
r
k
S
o
u
t
h
S
u
m
p
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s
5/26/2011
Al
t
e
r
n
a
t
e
No
.
1
Co
n
t
o
u
r
A
r
e
a
,
SF
V
o
l
u
m
e
,
AF
T
o
t
a
l
Vo
l
u
m
e
,
AF
35
0
.
0
0
3
4
5
.
0
0
3
4
4
.
0
0
Ma
x
WS
3
5
3
1
3
5
2
1
0
2
.
9
7
2
5
.
1
5
8
.
2
1
1
7
.
9
2
1
9
.
2
7
35
2
1
2
3
6
9
4
2
.
7
3
2
2
.
1
8
5
.
2
3
1
4
.
9
5
1
6
.
2
9
35
1
1
1
3
7
5
6
2
.
5
1
1
9
.
4
5
2
.
5
1
1
2
.
2
2
1
3
.
5
7
Ab
o
v
e
Ex
i
s
t
WS
35
0
1
0
4
7
7
5
2
.
3
1
1
6
.
9
4
0
.
0
0
9
.
7
1
1
1
.
0
6
Be
l
o
w
Ex
i
s
t
WS
34
9
9
6
7
5
4
2
.
1
3
1
4
.
6
3
7.
4
0
8
.
7
5
34
8
8
8
9
8
9
1
.
9
5
1
2
.
5
0
5.
2
7
6
.
6
2
34
7
8
0
9
5
9
1
.
7
6
1
0
.
5
5
3.
3
2
4
.
6
6
34
6
7
2
4
4
5
1
.
5
6
8
.
7
9
1.
5
6
2
.
9
0
34
5
6
3
0
5
8
1
.
3
5
7
.
2
3
0.
0
0
1
.
3
5
34
4
5
4
4
0
2
1
.
1
2
5
.
8
8
0
34
3
4
3
5
8
3
0
.
9
5
4
.
7
6
34
2
3
9
5
5
3
0
.
8
4
3
.
8
0
34
1
3
3
9
7
8
0
.
7
2
2
.
9
6
34
0
2
9
0
1
4
0
.
6
1
2
.
2
4
33
9
2
4
3
0
5
0
.
5
1
1
.
6
2
33
8
2
0
1
3
7
0
.
4
2
1
.
1
1
33
7
1
6
2
5
3
0
.
3
3
0
.
7
0
33
6
1
2
8
1
3
0
.
2
5
0
.
3
6
33
5
8
5
9
1
0
.
1
2
0
.
1
2
33
4
1
6
2
0
0
.
0
0
0
.
0
0
35
3
1
1
1
8
1
7
3
.
7
6
3.
7
6
3
.
7
6
35
1
.
5
1
0
6
7
4
5
0
.
0
0
SU
B
T
O
T
A
L
:
21
.
6
8
2
3
.
0
3
Si
d
e
s
l
o
p
e
cu
t
:
2.
1
2
2
.
0
9
TO
T
A
L
:
23
.
8
0
2
5
.
1
2
Se
t
Po
n
d
At
W.
S
.
Av
a
i
l
a
b
l
e
in
Pa
r
k
(1
8
"
de
e
p
su
m
p
)
:
33
0
33
5
34
0
34
5
35
0
35
5
0.
0
0
1
0
.
0
0
2
0
.
0
0
3
0
.
0
0
C o n t o u r
Volume, AF
Su
m
p
Volume Above Exist WS Below Exist WS
Me
y
e
r
Ci
v
i
l
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
1
1
0
S
.
M
o
n
t
c
l
a
i
r
S
t
#
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Pa
g
e
1 of
1
Exist & Alt1 Sump Volume
RE
S
E
R
V
O
I
R
R
O
U
T
E
-
S
T
O
R
A
G
E
I
N
D
I
C
A
T
I
O
N
De
l
t
a
T
(
h
r
s
)
:
0
.
1
0
Re
s
e
r
v
o
i
r
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s
:
Di
s
c
h
.
,
(
c
f
s
)
S
t
o
r
a
g
e
,
A
F
S
/
T
+
Q
/
2
,
(
c
f
s
)
Q
1
:
3.
9
2
S1
:
1.
3
5
1
6
5
.
1
Q
2
:
3.
7
7
S2
:
4.
6
6
5
6
6
.
3
Q
3
:
3.
6
3
S3
:
8.
7
5
1
0
6
0
.
2
Q
4
:
3.
4
8
S4
:
13
.
5
7
1
6
4
3
.
6
Q
5
:
3.
4
1
S5
:
16
.
2
9
1
9
7
3
.
3
Q
6
:
3.
3
3
S6
:
19
.
2
7
2
3
3
2
.
9
P
e
a
k
I
n
f
l
o
w
(
c
f
s
)
:
14
8
.
3
5
P
e
a
k
O
u
t
f
l
o
w
(
c
f
s
)
:
3.
9
2
M
a
x
.
S
t
o
r
a
g
e
(
a
f
)
:
19
.
3
0
Ba
s
i
n
:
Re
c
t
a
n
g
u
l
a
r
B
a
s
i
n
V
a
l
u
e
s
:
De
p
t
h
I
n
c
r
e
m
e
n
t
:
1.
0
0
f
t
.
Ti
m
e
,
H
r
s
In
f
l
o
w
,
cf
s
In
f
l
o
w
,
Av
e
I
S/
T
+
Q/
2
O
2
'
O
2
'
'
Ou
t
f
l
o
w
,
C
F
S
St
o
r
a
g
e
Vo
l
,
A
F
Ou
t
l
e
t
T
y
p
e
:
Pu
m
p
Fr
e
e
b
o
a
r
d
:
1.
0
0
f
t
.
00
0.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
Lo
w
e
s
t
C
u
r
b
F
L
:
35
4
.
1
0
e
l
e
v
.
0.
1
0
0
.
0
7
5
0.
0
4
0
.
0
4
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
Ma
x
i
m
u
m
W
.
S
.
35
3
.
1
0
e
l
e
v
.
0.
2
0
0
.
3
2
0.
2
0
0
.
2
3
0
.
0
1
0
.
0
0
0
.
0
1
0
.
0
0
Ba
s
i
n
I
n
v
e
r
t
:
33
4
.
0
0
e
l
e
v
.
0.
3
0
0
.
7
6
6
0.
5
4
0
.
7
7
0
.
0
2
0
.
0
0
0
.
0
2
0
.
0
1
0.
4
0
1
.
2
8
9
1.
0
3
1
.
7
8
0
.
0
4
0
.
0
0
0
.
0
4
0
.
0
2
De
p
t
h
,
fe
e
t
WS
Ar
e
a
,
S.
F
.
Ad
d
Vo
l
u
m
e
,
C
.
F
.
To
t
a
l
Vo
l
u
m
e
,
A
.
F
.
Ou
t
l
e
t
Di
s
c
h
a
r
ge
,
C.
F
.
S
.
Elev.
0.
5
0
1
.
7
7
3
1.
5
3
3
.
2
7
0
.
0
8
0
.
0
0
0
.
0
8
0
.
0
3
0.
6
0
2
.
1
5
1.
9
6
5
.
1
5
0
.
1
2
0
.
0
0
0
.
1
2
0
.
0
5
0.
0
0
5
4
4
0
2
0
0
.
0
0
0
3
.
9
9
344.00
0.
7
0
2
.
4
2
3
2.
2
9
7
.
3
2
0
.
1
7
0
.
0
0
0
.
1
7
0
.
0
7
1.
0
0
6
3
0
5
8
5
8
7
3
0
1
.
3
4
8
3
.
9
2
*
3
4
5
.
0
0
0.
8
0
2
.
6
0
3
2.
5
1
9
.
6
6
0
.
2
3
0
.
0
0
0
.
2
3
0
.
0
9
2.
0
0
7
2
4
4
5
6
7
7
5
2
2
.
9
0
4
3
.
8
5
346.00
0.
9
0
2
.
7
2
6
2.
6
6
1
2
.
0
9
0
.
2
9
0
.
0
0
0
.
2
9
0
.
1
1
3.
0
0
8
0
9
5
9
7
6
7
0
2
4
.
6
6
4
3
.
7
7
*
3
4
7
.
0
0
1.
0
0
2
.
8
1
2
2.
7
7
1
4
.
5
7
0
.
3
5
0
.
0
0
0
.
3
5
0
.
1
3
4.
0
0
8
8
9
8
9
8
4
9
7
4
6
.
6
1
5
3
.
7
0
348.00
1.
1
0
2
.
8
7
2.
8
4
1
7
.
0
7
0
.
4
1
0
.
0
0
0
.
4
1
0
.
1
5
5.
0
0
9
6
7
5
4
9
2
8
7
2
8
.
7
4
7
3
.
6
3
*
3
4
9
.
0
0
1.
2
0
2
.
9
1
2.
8
9
1
9
.
5
5
0
.
4
6
0
.
0
0
0
.
4
6
0
.
1
7
6.
0
0
1
0
4
7
7
5
1
0
0
7
6
5
1
1
.
0
6
0
3
.
5
5
350.00
1.
3
0
2
.
9
3
8
2.
9
2
2
2
.
0
1
0
.
5
2
0
.
0
0
0
.
5
2
0
.
1
9
7.
0
0
1
1
3
7
5
6
1
0
9
2
6
6
1
3
.
5
6
9
3
.
4
8
*
3
5
1
.
0
0
1.
4
0
2
.
9
5
7
2.
9
5
2
4
.
4
4
0
.
5
8
0
.
0
0
0
.
5
8
0
.
2
1
8.
0
0
1
2
3
6
9
4
1
1
8
7
2
5
1
6
.
2
9
4
3
.
4
1
*
3
5
2
.
0
0
1.
5
0
2
.
9
7
1
2.
9
6
2
6
.
8
2
0
.
6
4
0
.
0
0
0
.
6
4
0
.
2
3
9.
0
0
1
3
5
2
1
0
1
2
9
4
5
2
1
9
.
2
6
6
3
.
3
3
*
3
5
3
.
0
0
1.
6
0
2
.
9
8
2.
9
8
2
9
.
1
6
0
.
6
9
0
.
0
0
0
.
6
9
0
.
2
5
At
P
e
a
k
I
n
f
l
o
w
:
5.
3
6
9.
5
7
4
349.36
1.
7
0
2
.
9
8
7
2.
9
8
3
1
.
4
5
0
.
7
5
0
.
0
0
0
.
7
5
0
.
2
7
At
P
e
a
k
S
t
o
r
a
g
e
:
9.
0
0
19
.
3
0
2
353.00
1.
8
0
2
.
9
9
1
2.
9
9
3
3
.
7
0
0
.
8
0
0
.
0
0
0
.
8
0
0
.
2
8
At
P
e
a
k
O
u
t
f
l
o
w
:
0.
9
3
1.
5
3
1
344.93
1.
9
0
2
.
9
9
4
2.
9
9
3
5
.
8
9
0
.
8
5
0
.
0
0
0
.
8
5
0
.
3
0
020406080
10
0
12
0
14
0
16
0
0
5
10
15
20
Discharge, CFS
Ti
m
e
,
H
R
S
De
t
e
n
t
i
o
n
B
a
s
i
n
R
o
u
t
i
n
g
Inflow, cfs Outflow, CFS
Me
y
e
r
Ci
v
i
l
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
1
1
0
S
.
M
o
n
t
c
l
a
i
r
S
t
#
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Pa
g
e
1
o
f
2
DET BASIN - Pumped
Ti
m
e
,
H
r
s
In
f
l
o
w
,
cf
s
In
f
l
o
w
,
Av
e
I
S/
T
+
Q/
2
O
2
'
O
2
'
'
Ou
t
f
l
o
w
,
C
F
S
St
o
r
a
g
e
Vo
l
,
A
F
Ou
t
l
e
t
T
y
p
e
:
Pu
m
p
2.
0
0
2
.
9
9
6
3.
0
0
3
8
.
0
3
0
.
9
0
0
.
0
0
0
.
9
0
0
.
3
2
Pu
m
p
F
l
o
w
s
Di
a
m
e
t
e
r
:
8
i
n
c
h
e
s
2.
1
0
2
.
9
9
8
3.
0
0
4
0
.
1
3
0
.
9
5
0
.
0
0
0
.
9
5
0
.
3
4
Ne
t
L
i
f
t
F
l
o
w
,
CF
S
Flo
w
,
GP
M
Ve
l
o
c
i
t
y
,
F
P
S
Ve
l
He
a
d
K
H
e
a
d
LossTotal HeadHP
2.
2
0
3
.
0
0
2
3.
0
0
4
2
.
1
8
1
.
0
0
0
.
0
0
1
.
0
0
0
.
3
5
0.
0
1
3
.
9
9
1
7
9
1
1
1
.
4
2
2
.
0
3
6
1
2
.
1
6
1
2
.
1
7
1
1
.
0
2.
3
0
3
.
0
1
3.
0
1
4
4
.
1
8
1
.
0
5
0
.
0
0
1
.
0
5
0
.
3
7
1.
0
1
3
.
9
2
1
7
5
9
1
1
.
2
2
1
.
9
6
6
1
1
.
7
3
1
2
.
7
4
1
1
.
3
2.
4
0
3
.
0
2
6
3.
0
2
4
6
.
1
5
1
.
1
0
0
.
0
0
1
.
1
0
0
.
3
8
2.
0
0
3
.
8
5
1
7
2
7
1
1
.
0
2
1
.
8
9
6
1
1
.
3
1
1
3
.
3
1
1
1
.
6
2.
5
0
3
.
0
4
9
3.
0
4
4
8
.
0
9
1
.
1
4
0
.
0
0
1
.
1
4
0
.
4
0
3.
0
1
3
.
7
7
1
6
9
4
1
0
.
8
1
1
.
8
1
6
1
0
.
8
9
1
3
.
9
0
1
1
.
9
2.
6
0
3
.
0
7
8
3.
0
6
5
0
.
0
2
1
.
1
9
0
.
0
0
1
.
1
9
0
.
4
2
4.
0
0
3
.
7
0
1
6
6
2
1
0
.
6
1
1
.
7
5
6
1
0
.
4
8
1
4
.
4
8
1
2
.
2
2.
7
0
3
.
1
1
2
3.
1
0
5
1
.
9
2
1
.
2
3
0
.
0
0
1
.
2
3
0
.
4
3
5.
0
0
3
.
6
3
1
6
2
9
1
0
.
4
0
1
.
6
8
6
1
0
.
0
7
1
5
.
0
7
1
2
.
4
2.
8
0
3
.
1
5
3.
1
3
5
3
.
8
2
1
.
2
8
0
.
0
0
1
.
2
8
0
.
4
5
6.
0
1
3
.
5
5
1
5
9
6
1
0
.
1
8
1
.
6
1
6
9
.
6
6
1
5
.
6
7
1
2
.
6
2.
9
0
3
.
1
9
3.
1
7
5
5
.
7
2
1
.
3
2
0
.
0
0
1
.
3
2
0
.
4
6
7.
0
1
3
.
4
8
1
5
6
3
9
.
9
7
1
.
5
4
6
9
.
2
6
1
6
.
2
7
1
2
.
8
3.
0
0
3
.
2
3
5
3.
2
1
5
7
.
6
1
1
.
3
7
0
.
0
0
1
.
3
7
0
.
4
8
8.
0
1
3
.
4
1
1
5
2
9
9
.
7
5
1
.
4
8
6
8
.
8
7
1
6
.
8
8
1
3
.
0
3.
1
0
3
.
2
8
2
3.
2
6
5
9
.
5
0
1
.
4
1
0
.
0
0
1
.
4
1
0
.
4
9
9.
0
0
3
.
3
3
1
4
9
6
9
.
5
4
1
.
4
1
6
8
.
4
8
1
7
.
4
8
1
3
.
2
3.
2
0
3
.
3
2
7
3.
3
0
6
1
.
3
9
1
.
4
6
0
.
0
0
1
.
4
6
0
.
5
1
3.
3
0
3
.
3
6
5
3.
3
5
6
3
.
2
8
1
.
5
0
0
.
0
0
1
.
5
0
0
.
5
2
3.
4
0
3
.
4
0
3
3.
3
8
6
5
.
1
6
1
.
5
5
0
.
0
0
1
.
5
5
0
.
5
4
3.
5
0
3
.
4
4
4
3.
4
2
6
7
.
0
4
1
.
5
9
0
.
0
0
1
.
5
9
0
.
5
6
3.
6
0
3
.
4
8
9
3.
4
7
6
8
.
9
2
1
.
6
4
0
.
0
0
1
.
6
4
0
.
5
7
3.
7
0
3
.
5
3
4
3.
5
1
7
0
.
7
9
1
.
6
8
0
.
0
0
1
.
6
8
0
.
5
9
3.
8
0
3
.
5
8
1
3.
5
6
7
2
.
6
7
1
.
7
2
0
.
0
0
1
.
7
2
0
.
6
0
3.
9
0
3
.
6
2
7
3.
6
0
7
4
.
5
5
1
.
7
7
0
.
0
0
1
.
7
7
0
.
6
2
4.
0
0
3
.
6
7
2
3.
6
5
7
6
.
4
3
1
.
8
1
0
.
0
0
1
.
8
1
0
.
6
3
4.
1
0
3
.
7
1
8
3.
7
0
7
8
.
3
1
1
.
8
6
0
.
0
0
1
.
8
6
0
.
6
5
4.
2
0
3
.
7
6
3
3.
7
4
8
0
.
1
9
1
.
9
0
0
.
0
0
1
.
9
0
0
.
6
6
4.
3
0
3
.
8
0
8
3.
7
9
8
2
.
0
8
1
.
9
5
0
.
0
0
1
.
9
5
0
.
6
8
4.
4
0
3
.
8
5
3
3.
8
3
8
3
.
9
6
1
.
9
9
0
.
0
0
1
.
9
9
0
.
6
9
4.
5
0
3
.
8
9
8
3.
8
8
8
5
.
8
4
2
.
0
4
0
.
0
0
2
.
0
4
0
.
7
1
4.
6
0
3
.
9
4
3
3.
9
2
8
7
.
7
3
2
.
0
8
0
.
0
0
2
.
0
8
0
.
7
2
4.
7
0
3
.
9
8
8
3.
9
7
8
9
.
6
1
2
.
1
3
0
.
0
0
2
.
1
3
0
.
7
4
4.
8
0
4
.
0
3
3
4.
0
1
9
1
.
5
0
2
.
1
7
0
.
0
0
2
.
1
7
0
.
7
5
4.
9
0
4
.
0
7
8
4.
0
6
9
3
.
3
8
2
.
2
2
0
.
0
0
2
.
2
2
0
.
7
7
5.
0
0
4
.
1
1
9
4.
1
0
9
5
.
2
6
2
.
2
6
0
.
0
0
2
.
2
6
0
.
7
9
5.
1
0
4
.
1
6
4.
1
4
9
7
.
1
4
2
.
3
0
0
.
0
0
2
.
3
0
0
.
8
0
5.
2
0
4
.
2
0
3
4.
1
8
9
9
.
0
2
2
.
3
5
0
.
0
0
2
.
3
5
0
.
8
2
5.
3
0
4
.
2
5
4
4.
2
3
1
0
0
.
9
0
2
.
3
9
0
.
0
0
2
.
3
9
0
.
8
3
5.
4
0
4
.
3
0
5
4.
2
8
1
0
2
.
7
8
2
.
4
4
0
.
0
0
2
.
4
4
0
.
8
5
3.
2
0
3.
3
0
3.
4
0
3.
5
0
3.
6
0
3.
7
0
3.
8
0
3.
9
0
4.
0
0
4.
1
0
0
5
10
15
2025
Q, cfs
St
o
r
a
g
e
,
A
F
St
o
r
a
g
e
v
s
D
i
s
c
h
a
r
g
e
Me
y
e
r
Ci
v
i
l
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
1
1
0
S
.
M
o
n
t
c
l
a
i
r
S
t
#
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Pa
g
e
2
o
f
2
DET BASIN - Pumped
RE
S
E
R
V
O
I
R
R
O
U
T
E
-
S
T
O
R
A
G
E
I
N
D
I
C
A
T
I
O
N
De
l
t
a
T
(
h
r
s
)
:
0
.
1
0
Re
s
e
r
v
o
i
r
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s
:
Di
s
c
h
.
,
(
c
f
s
)
S
t
o
r
a
g
e
,
A
F
S
/
T
+
Q
/
2
,
(
c
f
s
)
Q
1
:
1.
6
8
S1
:
1.
3
5
1
6
4
.
0
Q
2
:
2.
9
1
S2
:
4.
6
6
5
6
5
.
9
Q
3
:
3.
7
6
S3
:
8.
7
5
1
0
6
0
.
3
Q
4
:
4.
4
5
S4
:
13
.
5
7
1
6
4
4
.
1
Q
5
:
4.
7
5
S5
:
16
.
2
9
1
9
7
4
.
0
Q
6
:
5.
0
4
S6
:
19
.
2
7
2
3
3
3
.
7
P
e
a
k
I
n
f
l
o
w
(
c
f
s
)
:
14
8
.
3
5
P
e
a
k
O
u
t
f
l
o
w
(
c
f
s
)
:
5.
0
4
M
a
x
.
S
t
o
r
a
g
e
(
a
f
)
:
19
.
2
3
Ti
m
e
,
H
r
s
In
f
l
o
w
,
cf
s
In
f
l
o
w
,
Av
e
I
S/
T
+
Q/
2
O
2
'
O
2
'
'
Ou
t
f
l
o
w
,
CF
S
St
o
r
a
g
e
Vo
l
,
A
F
Ba
s
i
n
:
00
0.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
De
p
t
h
I
n
c
r
e
m
e
n
t
:
1
.
0
0
f
t
.
0.
1
0
0
.
0
7
5
0.
0
4
0
.
0
4
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
Ou
t
l
e
t
T
y
p
e
(
W
e
i
r
/
O
r
i
f
i
c
e
)
:
or
i
f
i
c
e
0.
2
0
0
.
3
2
0.
2
0
0
.
2
3
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
Re
c
t
a
n
g
u
l
a
r
W
e
i
r
V
a
l
u
e
s
:
W
i
d
t
h
:
f
t
.
0.
3
0
0
.
7
6
6
0.
5
4
0
.
7
8
0
.
0
1
0
.
0
0
0
.
0
1
0
.
0
1
Cr
e
s
t
S
e
t
t
i
n
g
:
f
t
.
0.
4
0
1
.
2
8
9
1.
0
3
1
.
7
9
0
.
0
2
0
.
0
0
0
.
0
2
0
.
0
2
Ci
r
c
u
l
a
r
O
r
i
f
i
c
e
V
a
l
u
e
s
:
0.
5
0
1
.
7
7
3
1.
5
3
3
.
3
1
0
.
0
3
0
.
0
0
0
.
0
3
0
.
0
3
Di
a
m
e
t
e
r
:
8
i
n
.
0.
6
0
2
.
1
5
1.
9
6
5
.
2
3
0
.
0
5
0
.
0
0
0
.
0
5
0
.
0
5
C/
L
S
e
t
t
i
n
g
:
3
4
4
f
t
.
0.
7
0
2
.
4
2
3
2.
2
9
7
.
4
7
0
.
0
8
0
.
0
0
0
.
0
8
0
.
0
7
0.
8
0
2
.
6
0
3
2.
5
1
9
.
9
0
0
.
1
0
0
.
0
0
0
.
1
0
0
.
0
9
Fr
e
e
b
o
a
r
d
:
1
.
0
0
f
t
.
0.
9
0
2
.
7
2
6
2.
6
6
1
2
.
4
7
0
.
1
3
0
.
0
0
0
.
1
3
0
.
1
1
Lo
w
e
s
t
C
u
r
b
F
L
:
3
5
4
.
1
0
e
l
e
v
.
1.
0
0
2
.
8
1
2
2.
7
7
1
5
.
1
1
0
.
1
5
0
.
0
0
0
.
1
5
0
.
1
4
Ma
x
i
m
u
m
W
.
S
.
3
5
3
.
1
0
e
l
e
v
.
1.
1
0
2
.
8
7
2.
8
4
1
7
.
7
9
0
.
1
8
0
.
0
0
0
.
1
8
0
.
1
6
Ba
s
i
n
I
n
v
e
r
t
:
3
3
4
.
0
0
e
l
e
v
.
1.
2
0
2
.
9
1
2.
8
9
2
0
.
5
0
0
.
2
1
0
.
0
0
0
.
2
1
0
.
1
8
1.
3
0
2
.
9
3
8
2.
9
2
2
3
.
2
2
0
.
2
4
0
.
0
0
0
.
2
4
0
.
2
0
1.
4
0
2
.
9
5
7
2.
9
5
2
5
.
9
3
0
.
2
7
0
.
0
0
0
.
2
7
0
.
2
2
1.
5
0
2
.
9
7
1
2.
9
6
2
8
.
6
2
0
.
2
9
0
.
0
0
0
.
2
9
0
.
2
5
1.
6
0
2
.
9
8
2.
9
8
3
1
.
3
1
0
.
3
2
0
.
0
0
0
.
3
2
0
.
2
7
0
.
0
0
5
4
4
0
2
0
0
.
0
0
0
0
.
0
0
34
4
.
0
0
1.
7
0
2
.
9
8
7
2.
9
8
3
3
.
9
7
0
.
3
5
0
.
0
0
0
.
3
5
0
.
2
9
1
.
0
0
6
3
0
5
8
5
8
7
3
0
1
.
3
4
8
1
.
6
8
*
3
4
5
.
0
0
1.
8
0
2
.
9
9
1
2.
9
9
3
6
.
6
1
0
.
3
8
0
.
0
0
0
.
3
8
0
.
3
1
2
.
0
0
7
2
4
4
5
6
7
7
5
2
2
.
9
0
4
2
.
3
8
34
6
.
0
0
1.
9
0
2
.
9
9
4
2.
9
9
3
9
.
2
3
0
.
4
0
0
.
0
0
0
.
4
0
0
.
3
3
3
.
0
0
8
0
9
5
9
7
6
7
0
2
4
.
6
6
4
2
.
9
1
*
3
4
7
.
0
0
2.
0
0
2
.
9
9
6
3.
0
0
4
1
.
8
2
0
.
4
3
0
.
0
0
0
.
4
3
0
.
3
5
4
.
0
0
8
8
9
8
9
8
4
9
7
4
6
.
6
1
5
3
.
3
6
34
8
.
0
0
2.
1
0
2
.
9
9
8
3.
0
0
4
4
.
3
9
0
.
4
5
0
.
0
0
0
.
4
5
0
.
3
8
5
.
0
0
9
6
7
5
4
9
2
8
7
2
8
.
7
4
7
3
.
7
6
*
3
4
9
.
0
0
2.
2
0
3
.
0
0
2
3.
0
0
4
6
.
9
3
0
.
4
8
0
.
0
0
0
.
4
8
0
.
4
0
6
.
0
0
1
0
4
7
7
5
1
0
0
7
6
5
1
1
.
0
6
0
4
.
1
2
35
0
.
0
0
2.
3
0
3
.
0
1
3.
0
1
4
9
.
4
6
0
.
5
1
0
.
0
0
0
.
5
1
0
.
4
2
7
.
0
0
1
1
3
7
5
6
1
0
9
2
6
6
1
3
.
5
6
9
4
.
4
5
*
3
5
1
.
0
0
2.
4
0
3
.
0
2
6
3.
0
2
5
1
.
9
7
0
.
5
3
0
.
0
0
0
.
5
3
0
.
4
4
8
.
0
0
1
2
3
6
9
4
1
1
8
7
2
5
1
6
.
2
9
4
4
.
7
5
*
3
5
2
.
0
0
2.
5
0
3
.
0
4
9
3.
0
4
5
4
.
4
7
0
.
5
6
0
.
0
0
0
.
5
6
0
.
4
6
9
.
0
0
1
3
5
2
1
0
1
2
9
4
5
2
1
9
.
2
6
6
5
.
0
4
*
3
5
3
.
0
0
De
p
t
h
,
fe
e
t
Ar
e
a
,
S.
F
.
Vo
l
u
m
e
,
C.
F
.
Vo
l
u
m
e
,
A.
F
.
Di
s
c
h
a
r
ge
,
E
l
e
v
.
020406080
10
0
12
0
14
0
16
0
0
5
1
0
1
5
2
0
Discharge, CFS
Ti
m
e
,
H
R
S
De
t
e
n
t
i
o
n
B
a
s
i
n
R
o
u
t
i
n
g
In
f
l
o
w
,
c
f
s
Ou
t
f
l
o
w
,
C
F
S
Me
y
e
r
Ci
v
i
l
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
1
1
0
S
.
M
o
n
t
c
l
a
i
r
S
t
#
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Pa
g
e
1
o
f
2
DET BASIN - Gravity
Ti
m
e
,
H
r
s
In
f
l
o
w
,
cf
s
In
f
l
o
w
,
Av
e
I
S/
T
+
Q/
2
O
2
'
O
2
'
'
Ou
t
f
l
o
w
,
CF
S
St
o
r
a
g
e
Vo
l
,
A
F
2.
6
0
3
.
0
7
8
3.
0
6
5
6
.
9
8
0
.
5
8
0
.
0
0
0
.
5
8
0
.
4
8
At
P
e
a
k
I
n
f
l
o
w
:
5.
8
1
1
0
.
6
1
2
34
9
.
8
1
2.
7
0
3
.
1
1
2
3.
1
0
5
9
.
4
9
0
.
6
1
0
.
0
0
0
.
6
1
0
.
5
0
At
P
e
a
k
S
t
o
r
a
g
e
:
8.
8
8
1
8
.
9
1
0
35
2
.
8
8
2.
8
0
3
.
1
5
3.
1
3
6
2
.
0
1
0
.
6
4
0
.
0
0
0
.
6
4
0
.
5
2
At
P
e
a
k
O
u
t
f
l
o
w
:
8.
9
9
1
9
.
2
2
7
35
2
.
9
9
2.
9
0
3
.
1
9
3.
1
7
6
4
.
5
5
0
.
6
6
0
.
0
0
0
.
6
6
0
.
5
4
3.
0
0
3
.
2
3
5
3.
2
1
6
7
.
1
0
0
.
6
9
0
.
0
0
0
.
6
9
0
.
5
6
3.
1
0
3
.
2
8
2
3.
2
6
6
9
.
6
7
0
.
7
1
0
.
0
0
0
.
7
1
0
.
5
8
Pu
m
p
F
l
o
w
s
Di
a
m
e
t
e
r
:
8
i
n
c
h
e
s
3.
2
0
3
.
3
2
7
3.
3
0
7
2
.
2
6
0
.
7
4
0
.
0
0
0
.
7
4
0
.
6
0
3.
3
0
3
.
3
6
5
3.
3
5
7
4
.
8
6
0
.
7
7
0
.
0
0
0
.
7
7
0
.
6
3
3.
4
0
3
.
4
0
3
3.
3
8
7
7
.
4
8
0
.
7
9
0
.
0
0
0
.
7
9
0
.
6
5
3.
5
0
3
.
4
4
4
3.
4
2
8
0
.
1
1
0
.
8
2
0
.
0
0
0
.
8
2
0
.
6
7
0.
0
1
3
.
9
9
1
7
9
1
1
1
.
4
2
2
.
0
3
6
1
2
.
1
6
1
2
.
1
7
1
1
.
0
3.
6
0
3
.
4
8
9
3.
4
7
8
2
.
7
5
0
.
8
5
0
.
0
0
0
.
8
5
0
.
6
9
1.
0
1
3
.
9
2
1
7
5
9
1
1
.
2
2
1
.
9
6
6
1
1
.
7
3
1
2
.
7
4
1
1
.
3
3.
7
0
3
.
5
3
4
3.
5
1
8
5
.
4
2
0
.
8
8
0
.
0
0
0
.
8
8
0
.
7
1
2.
0
0
3
.
8
5
1
7
2
7
1
1
.
0
2
1
.
8
9
6
1
1
.
3
1
1
3
.
3
1
1
1
.
6
3.
8
0
3
.
5
8
1
3.
5
6
8
8
.
1
0
0
.
9
0
0
.
0
0
0
.
9
0
0
.
7
4
3.
0
1
3
.
7
7
1
6
9
4
1
0
.
8
1
1
.
8
1
6
1
0
.
8
9
1
3
.
9
0
1
1
.
9
3.
9
0
3
.
6
2
7
3.
6
0
9
0
.
8
0
0
.
9
3
0
.
0
0
0
.
9
3
0
.
7
6
4.
0
0
3
.
7
0
1
6
6
2
1
0
.
6
1
1
.
7
5
6
1
0
.
4
8
1
4
.
4
8
1
2
.
2
4.
0
0
3
.
6
7
2
3.
6
5
9
3
.
5
2
0
.
9
6
0
.
0
0
0
.
9
6
0
.
7
8
5.
0
0
3
.
6
3
1
6
2
9
1
0
.
4
0
1
.
6
8
6
1
0
.
0
7
1
5
.
0
7
1
2
.
4
4.
1
0
3
.
7
1
8
3.
7
0
9
6
.
2
6
0
.
9
9
0
.
0
0
0
.
9
9
0
.
8
0
6.
0
1
3
.
5
5
1
5
9
6
1
0
.
1
8
1
.
6
1
6
9
.
6
6
1
5
.
6
7
1
2
.
6
4.
2
0
3
.
7
6
3
3.
7
4
9
9
.
0
1
1
.
0
1
0
.
0
0
1
.
0
1
0
.
8
3
7.
0
1
3
.
4
8
1
5
6
3
9
.
9
7
1
.
5
4
6
9
.
2
6
1
6
.
2
7
1
2
.
8
4.
3
0
3
.
8
0
8
3.
7
9
1
0
1
.
7
8
1
.
0
4
0
.
0
0
1
.
0
4
0
.
8
5
8.
0
1
3
.
4
1
1
5
2
9
9
.
7
5
1
.
4
8
6
8
.
8
7
1
6
.
8
8
1
3
.
0
4.
4
0
3
.
8
5
3
3.
8
3
1
0
4
.
5
7
1
.
0
7
0
.
0
0
1
.
0
7
0
.
8
7
9.
0
0
3
.
3
3
1
4
9
6
9
.
5
4
1
.
4
1
6
8
.
4
8
1
7
.
4
8
1
3
.
2
4.
5
0
3
.
8
9
8
3.
8
8
1
0
7
.
3
7
1
.
1
0
0
.
0
0
1
.
1
0
0
.
8
9
4.
6
0
3
.
9
4
3
3.
9
2
1
1
0
.
1
9
1
.
1
3
0
.
0
0
1
.
1
3
0
.
9
2
4.
7
0
3
.
9
8
8
3.
9
7
1
1
3
.
0
3
1
.
1
6
0
.
0
0
1
.
1
6
0
.
9
4
4.
8
0
4
.
0
3
3
4.
0
1
1
1
5
.
8
8
1
.
1
9
0
.
0
0
1
.
1
9
0
.
9
6
4.
9
0
4
.
0
7
8
4.
0
6
1
1
8
.
7
5
1
.
2
2
0
.
0
0
1
.
2
2
0
.
9
9
5.
0
0
4
.
1
1
9
4.
1
0
1
2
1
.
6
3
1
.
2
5
0
.
0
0
1
.
2
5
1
.
0
1
5.
1
0
4
.
1
6
4.
1
4
1
2
4
.
5
2
1
.
2
8
0
.
0
0
1
.
2
8
1
.
0
4
5.
2
0
4
.
2
0
3
4.
1
8
1
2
7
.
4
3
1
.
3
1
0
.
0
0
1
.
3
1
1
.
0
6
5.
3
0
4
.
2
5
4
4.
2
3
1
3
0
.
3
5
1
.
3
4
0
.
0
0
1
.
3
4
1
.
0
8
5.
4
0
4
.
3
0
5
4.
2
8
1
3
3
.
2
9
1
.
3
7
0
.
0
0
1
.
3
7
1
.
1
1
5.
5
0
4
.
3
5
4
4.
3
3
1
3
6
.
2
6
1
.
4
0
0
.
0
0
1
.
4
0
1
.
1
3
5.
6
0
4
.
3
9
8
4.
3
8
1
3
9
.
2
4
1
.
4
3
0
.
0
0
1
.
4
3
1
.
1
6
5.
7
0
4
.
4
4
3
4.
4
2
1
4
2
.
2
3
1
.
4
6
0
.
0
0
1
.
4
6
1
.
1
8
5.
8
0
4
.
4
8
6
4.
4
6
1
4
5
.
2
4
1
.
4
9
0
.
0
0
1
.
4
9
1
.
2
1
5.
9
0
4
.
5
3
4.
5
1
1
4
8
.
2
5
1
.
5
2
0
.
0
0
1
.
5
2
1
.
2
3
6.
0
0
4
.
5
7
4
4.
5
5
1
5
1
.
2
9
1
.
5
5
0
.
0
0
1
.
5
5
1
.
2
6
6.
1
0
4
.
6
2
4.
6
0
1
5
4
.
3
3
1
.
5
8
0
.
0
0
1
.
5
8
1
.
2
8
6.
2
0
4
.
6
7
2
4.
6
5
1
5
7
.
4
0
1
.
6
1
0
.
0
0
1
.
6
1
1
.
3
1
6.
3
0
4
.
7
3
6
4.
7
0
1
6
0
.
4
9
1
.
6
4
0
.
0
0
1
.
6
4
1
.
3
3
6.
4
0
4
.
8
1
7
4.
7
8
1
6
3
.
6
2
1
.
6
8
0
.
0
0
1
.
6
8
1
.
3
6
6.
5
0
4
.
9
1
5
4.
8
7
1
6
6
.
8
1
1
.
6
9
0
.
0
0
1
.
6
9
1
.
3
8
6.
6
0
5
.
0
2
9
4.
97
17
0
.
0
9
1
.
7
0
0
.
0
0
1
.
7
0
1
.
4
1
6.
7
0
5
.
1
5
4
5.
0
9
1
7
3
.
4
8
1
.
7
1
0
.
0
0
1
.
7
1
1
.
4
4
6.
8
0
5
.
2
8
6
5.
2
2
1
7
6
.
9
9
1
.
7
2
0
.
0
0
1
.
7
2
1
.
4
7
6.
9
0
5
.
4
2
5
5.
3
6
1
8
0
.
6
3
1
.
7
3
0
.
0
0
1
.
7
3
1
.
5
0
He
a
d
Lo
s
s
To
t
a
l
He
a
d
HP
K
Ne
t
L
i
f
t
F
l
o
w
,
CF
S
Fl
o
w
,
GP
M
Ve
l
o
c
i
t
y
,
F
P
S
Ve
l
He
a
d
0.
0
0
1.
0
0
2.
0
0
3.
0
0
4.
0
0
5.
0
0
6.
0
0
0
5
1
0
1
5
2
0
2
5
Q, cfs
St
o
r
a
g
e
,
A
F
St
o
r
a
g
e
v
s
D
i
s
c
h
a
r
g
e
Me
y
e
r
Ci
v
i
l
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
1
1
0
S
.
M
o
n
t
c
l
a
i
r
S
t
#
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Pa
g
e
2
o
f
2
DET BASIN - Gravity
Ca
m
p
u
s
P
a
r
k
S
o
u
t
h
S
u
m
p
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s
Al
t
e
r
n
a
t
e
No
.
3
5/25/2011
Co
n
t
o
u
r
A
r
e
a
,
SF
V
o
l
u
m
e
,
AF
T
o
t
a
l
Vo
l
u
m
e
,
AF
35
0
.
0
0
3
4
5
.
0
0
3
4
4
.
0
0
Ma
x
WS
3
5
3
1
5
0
6
9
0
3
.
3
8
3
1
.
4
1
9
.
6
9
2
2
.
9
0
2
5
.
0
9
35
2
1
4
3
9
4
4
3
.
2
3
2
8
.
0
3
6
.
3
1
1
9
.
5
2
2
1
.
7
1
35
1
1
3
7
3
4
3
3
.
0
8
2
4
.
8
0
3
.
0
8
1
6
.
2
9
1
8
.
4
8
35
0
1
3
0
9
0
8
2
.
9
3
2
1
.
7
2
0
.
0
0
1
3
.
2
1
1
5
.
4
0
34
9
1
2
4
5
9
5
2
.
7
9
1
8
.
7
9
10
.
2
8
1
2
.
4
7
34
8
1
1
8
3
5
7
2
.
6
5
1
6
.
0
0
7.
4
9
9
.
6
8
34
7
1
1
2
1
0
6
2
.
5
0
1
3
.
3
5
4.
8
4
7
.
0
4
34
6
1
0
5
5
5
8
2
.
3
4
1
0
.
8
5
2.
3
4
4
.
5
4
34
5
9
8
7
3
5
2
.
1
9
8
.
5
1
0.
0
0
2
.
1
9
Ab
o
v
e
Po
n
d
WS
34
4
9
2
2
1
9
1
.
5
6
6
.
3
2
0
Be
l
o
w
Po
n
d
WS
34
3
4
3
5
8
3
0
.
9
5
4
.
7
6
34
2
3
9
5
5
3
0
.
8
4
3
.
8
0
34
1
3
3
9
7
8
0
.
7
2
2
.
9
6
34
0
2
9
0
1
4
0
.
6
1
2
.
2
4
33
9
2
4
3
0
5
0
.
5
1
1
.
6
2
33
8
2
0
1
3
7
0
.
4
2
1
.
1
1
33
7
1
6
2
5
3
0
.
3
3
0
.
7
0
33
6
1
2
8
1
3
0
.
2
5
0
.
3
6
33
5
8
5
9
1
0
.
1
2
0
.
1
2
33
4
1
6
2
0
0
.
0
0
0
.
0
0
Se
t
Po
n
d
At
W.
S
.
33
0
33
5
34
0
34
5
35
0
35
5
0.
0
0
1
0
.
0
0
2
0
.
0
0
3
0
.
0
0
4
0
.
0
0
C o n t o u r
Volume, AF
Su
m
p
Volume Above Pond WS Below Pond WS
Me
y
e
r
Ci
v
i
l
E
n
g
i
n
e
e
r
i
n
g
,
I
n
c
.
1
1
0
S
.
M
o
n
t
c
l
a
i
r
S
t
#
1
0
4
,
B
a
k
e
r
s
f
i
e
l
d
,
C
A
9
3
3
0
9
Pa
g
e
1 of
1
Alt 3 Sump Volume
PIPE:
N:0.013 Design Point:
SLOPE:0.00060 FT/FTQ (CFS):20.22
SIZES%DDn (FT)V (FPS)Q (CFS)V (FPS):2.78
39"00.0000.000.00Dn (FT):2.66
100.3250.980.42
200.6501.501.77
300.9751.893.96
401.3002.206.82
501.6252.4410.11
601.9502.6113.59
702.2752.7316.93
802.6002.7819.77
81.952.6632.7820.22
902.9252.7421.56
953.0882.6721.73
1003.2502.4420.23
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0510152025
DE
P
T
H
,
F
T
Q, CFS
FLOW RATE
39 inch at 0.0006FT/FT
Design Point:
``
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 5 10 15 20 25
VE
L
O
C
I
T
Y
,
F
P
S
FLOW, CFS
PIPE HYDRAULICS
39 inch at 0.0006FT/FT
Design Point:
`````
Meyer Civil Engineering, Inc.
110 S. Montclair St #104, Bakersfiled, CA 93309 Page 1 of 1 Single Point