Loading...
HomeMy WebLinkAboutCampusParkSouthSumpRemediationStudy CCIITTYY OOFF BBAAKKEERRSSFFIIEELLDD PPUUBBLLIICC WWOORRKKSS DDEEPPAARRTTMMEENNTT CCAAMMPPUUSS PPAARRKK SSOOUUTTHH SSUUMMPP RREEMMEEDDIIAATTIIOONN SSTTUUDDYY PPrreeppaarreedd JJuunnee 2222,,22001111 Page 1 of 7 REPORT FOR CITY OF BAKERSFIELD PUBLIC WORKS DEPARTMENT CAMPUS PARK SOUTH SUMP REMEDIATION STUDY PURPOSE: The purpose of this study is to investigate the existing sump located in Campus Park South as to adequacy of capacity in particular regard to its current operation as a decorative pond. While the original sole purpose of the basin was to operate as a retention basin for storm water, the community surrounding the Campus Park South area has expressed serious concerns in regard to City forces cleaning and draining the existing sump. Therefore, the City desires to find a practical and cost effective solution for the operation of the sump. The City desires to maintain an esthetic pond and still utilize the basin for effective storm water storage. SCOPE: Original scope of the study is outlined as follows: 1. Meet with City Staff to determine study parameters and goals. 2. Review Storm Drain Facilities and Log Drain Inlet Locations. 3. Summarize Drainage Subarea Runoff volumes utilizing City Standards for runoff factors. 4. Determine volumes of the existing sump, above and below the pond water surface. (Final pond water surface may be lower and in different configuration than present.) 5. Study new geometries for adding volume to the sump. 6. Prepare detailed drainage study to determine flow rates. 7. Utilizing data from item 6, prepare a hydrograph analysis and pumped routing analysis. 8. Prepare an analysis to determine the event year that the current storage is effective. 9. Develop alternative preliminary/schematic designs. 10. Prepare budgetary cost estimates for the alternative designs. 11. Prepare exhibits that illustrate the alternative designs. 12. Prepare letter report with recommendations. 13. Provide two separate soils borings and logs, 35 feet deep. 14. Provide permeability analysis in accordance with City Standards. APPROACH: Based on the above scope, four alternatives were developed: Alternate No. 1 – This alternate explored the possibility of utilizing a portion of the park to the west to provide shallow storm water storage. Excavation would be such as to limit the depth of water to be no greater than 18 inches. This concept allows the storm water to overfill the existing sump area and flood the westerly portion of the park. Some modification to the existing sump would be required along its west edge. Alternate No. 2a – This alternative utilizes a pump station to dispose of excess storm water into the existing 39” sanitary sewer located in Pin Oak Park Boulevard. Alternate No. 2b – This alternative investigates the possibility of disposing excess storm water into the 39” sewer as in Alternate 2a, but investigates the possibility of gravity flow. Page 2 of 7 Alternate No. 3 – This alternate changes the moderately mild sump side slopes running about an average of ten horizontal units to one vertical unit (10:1) to four to one (4:1) to gain additional volume within the confines of the existing sump boundary. Alternate No. 4 – This alternate develops a complementary retention basin and storm drain that provides the additional required volume and conveys the water via a new storm drain. The new sump would be located on the north side of White lane just west of Pin Oak Park Boulevard and within an existing PG&E tower line easement. A right of way document or property purchase will need to be obtained from the underlying property owner. Other Alternates Considered But Not Pursued – The use of subterranean basins was considered. This method of storm water disposal essentially consists of building underground basins utilizing prefabricated structural domes in which to store the water. Permeable beds are built under the domes that connect to existing permeable soil strata. The stored water then eventually infiltrates into the underlying soils. This alternate was not pursued as permeable soils were not discovered above 16 feet in depth. In addition these soils were marginally adequate. Therefore, it was determined that pursuit of this alternative was not merited. INVESTIGATION: This study reviewed the original drainage study dated 6/18/81 prepared by JTB (no RCE signature or seal). Summarizing all of the areas and respective runoff coefficients, we determined the following: Average Rational C Area, acres 10 year volume AF, City Standard 10 year volume AF, NOAA Atlas 2 100 year volume AF, City Standard 100 year volume AF, NOAA Atlas 2 0.455 344.38 16.62 17.20 23.52 25.35 After review of the study and final zoning in place, revisions to the C values were applied to adjust to current City standards. The most significant revision was the C value used for the R-1 developed areas. The original study utilized 0.35. After reviewing the average lot size, which was about 7000 SF, this C value was adjusted to 0.40. The corresponding updated values are as follows: Average Rational C Area, acres 10 year volume AF, City Standard 10 year volume AF, NOAA Atlas 2 100 year volume AF, City Standard 100 year volume AF, NOAA Atlas 2 0.477 346.21 17.51 18.12 24.78 26.71 The NOAA volumes are shown for City Staff’s consideration, as technically, the City standard falls a little short of the 100 year volume (1.8 inches vs. 1.93 inches). Reviewing the existing sump and system geometry, it was found that the lowest inlet governing the maximum water surface elevation is located at Hillyer Way and Alden Court. The top of catch basin was measured at elevation 354.68. Gutter flow line is then estimated to be 354.1. Allowing 1 foot freeboard then sets the maximum sump water surface at 353.1. This study used 353.0. The following values were then derived: Page 3 of 7 1. Maximum total volume of sump: 25.15 AF 2. Volume below pond max. water surface (elev. 350): 16.94 AF 3. Volume above pond water surface: 8.21 AF 4. Rainfall amount on watershed to fill 8.21AF: 0.60 inches 5. Event for 24 hour storm: 0.71 year After the above investigation was completed the defined alternates were studied. Alternate No. 1 Under Alternate No.1, the sump and park would be modified as follows: 1. Lower the pond to approximately elevation 344.0. About 19.27 AF of storage would be available above the pond to the maximum elevation of 353.0. 2. Then add overflow area in the park to the west of the sump with a maximum depth of 18 inches. Approximately 3.76 AF of storage would be added. This would bring the total to 23.03 AF. 3. Excavate the mild slope on the westerly edge of the sump between the revised pond water surface and the fence line to a new level bench set at elevation 344.0 then slope up at 4:1 to the new 18 inch depth sump bottom. This would add another 2.09 AF of storage. The total storage would then be adequate at 25.12 AF. The revised pond surface (elev. 344.0) would be about 52% of the original area. The lowered pond water surface applies to all of the alternate designs. This lower water surface could be enhanced a little by excavating the side slopes along the pond edge. Architectural features could be added such as boulders and cobbles. It may be necessary to add a very small over-pour structure that would assure that the pond never exceeds the 344 elevation due to nuisance water. In addition and at the request of the Director, a large emergency over-pour should be provided so that flooding of homes near the lowest inlet will be remediated in case sump capacity is exceeded. Both over-pours would pipe to the sewer. The fence line should be reestablished on its original position. Creating the 18 inch deep sump will require the removal and replanting of the smaller trees, reestablishment of the turf and irrigation system and vertical relocation of the light standards with elevated sonotube foundations. A subterranean drain system would probably also be needed to help drain the 18 inch sump as quickly as possible. Additional survey information for the western portion of the park was performed so that the proposed grades and capacity for the 18 inch sump could be verified. Alternate No. 2a This alternate considers a lift station that would route drainage water above the 353.0 elevation in the existing sump without enlarging the sump area. Approximately 5.40 AF (1.76 million gallons) would need disposal to the sewer during the 100 year event. After detention basin studies were performed the following was determined: 1. The lift station would be equipped with a 15 HP pump capable of pumping 3.33 CFS under a total lift of 17.5 feet. A second pump would be required for redundancy. 2. Maximum flow into the sewer would be 3.92 CFS. The 39” sewer has a capacity of 20.2 CFS, so this system would require about 20% of the pipe’s capacity. 3. This alternate still requires a pond level at no greater than elevation 344.0. Page 4 of 7 Since a pump station is involved in this alternate, specific control of when the pumps are shutoff can be developed. This would allow about 19.3 Acre feet to remain in the sump and allow it to empty through infiltration. Deterministic volume would be 7.44 acre feet per year. In addition and at the request of the Director, a large emergency over-pour should be provided so that flooding of homes near the lowest inlet will be remediated in case sump capacity is exceeded. The over-pour would pipe to the sewer. Alternate No. 2b As in Alternate No. 2a this alternate also delivers excess storm water to the 39” sewer, but does so under gravity flow. After studying Alternate No. 2a, it was discovered that there is adequate grade to gravity flow to the sewer. The alternate would require a calibrated over pour weir structure that dumps immediately to the sewer. The maximum flow to the sewer would be 5.04 CFS and would require the disposal volume of 5.40 AF. It would also require a greater capacity reserve in the 39” sewer of about 27% of the pipe’s capacity. This alternate would have no control on emptying the sump and would drain down completely to the pond water surface elevation. Deterministic volume is 88.8 acre feet per year. Alternate No. 3 This alternate would excavate the existing sump bank area for about three quarters of the sump perimeter in the same fashion as described in Alternate No.1. The entire volume requirement could be contained within the current fence alignment. The available volume would be 25.09 AF at elevation 353.0. The pond elevation is set at 344.0. A small spill device to the sewer is recommended here as well. In addition and at the request of the Director, a large emergency over- pour should be provided so that flooding of homes near the lowest inlet will be remediated in case sump capacity is exceeded. Both over-pours would pipe to the sewer. Some nice trees would need to be removed and replaced higher up on the bank and closer to the fence. If this option is pursued, 36” box trees would need to be specified for replacement. An alternate section is shown on the sketch which would significantly enlarge the size of the pond. Instead of a level shelf at 344.0 the shelf would be sloped to allow the pond surface to expand to the 4:1 slope. Perhaps some boulders and cobbles could enhance and define the pond edge. Alternate No. 4 This alternate would provide a complementary sump located on the north side of White Lane in an existing tower line easement. The sump volume required is a minimum of 5.4 acre feet. In order for this volume to be effective, the maximum water surface must match that of the Campus South Park Sump maximum water surface at elevation 353.0. The 5.4 acre feet of storage must fall below that elevation and be no lower than the planned pond elevation of 344.0. A storm drain would be installed and tie-in on the existing Pin Oak Park Boulevard drain between Carvalho Court and Heely Court and follow Bellows Avenue to Kilterbury Lane and across Whit Lane to the sump location. The pipe would be set on a minimum slope of 0.1%. This tie-in will allow the two sumps to float on the same water surface. A calculated flow of 42 CFS will require a 36” pipe size. The original ground surface is much higher at the proposed sump location, about elevation 361 to 362, and thus will require much larger than normal excavation for a typical sump. This is the only alternate that does not require actual construction in the park itself. Page 5 of 7 Right of Way Purchase – Arnold Ramming and Don Anderson, both with City Staff, assisted in the development of the right of way cost. Mr. Anderson estimated the value to be approximately $0.50 per square foot. Mr. Anderson commented that the current owner - Castle & Cooke - would probably sell the property to the City, but only if we take the entire parcel, which would be full width of the parcel and then the full length from White Lane to Persimmon Drive. Castle & Cooke’s reason for this would most likely be towards reducing their ownership responsibility on a parcel that has no true value for them. Mr. Ramming added that with the excess acquisition, the City would have several choices 1) make the retention basin larger than needed for the Campus Park South issue so that we have more options in the area, and/or 2) construct a material storage yard, which is something Mike Connor recently expressed some interest in doing in this general vicinity; develop another small community park similar to the one at South Laurelglen Boulevard. The dollar amount for this acquisition is then estimated to be $70,000 [660 feet X 204 feet X $0.50 per sf = 67,320 rounded up to nearest ten thousand to account for incidental costs]. CONCLUSION AND RECOMMENDATIONS: All the alternate designs are feasible solutions. Therefore, basically two factors can be used to rank the alternatives. 1) The cost of the project and associated capitalized operation and maintenance costs and 2) A value placed on esthetics. While it is impossible to equate esthetics to monetary value, a ranking has been provided to assist the City in the selection of the best alternate design. Alternate Construction Cost Capitalized Operation and Maintenance Costs Total Cost Esthetics Rank Esthetic Issues 1 527,327 54,909582,2365 The park would get flooded for events greater than the 14 year event. Cleanup would be significant and a significant inconvenience to the use of the park could occur. 2a 372,001 107,048479,0493 Visual change and impact to the park would be minimal. A lift station can cause operational and odor issues. 2b 272,428 752,7091,025,1372 Visual change and impact to the park would be minimal. Some safety concerns would need addressing for the weir structure. 3 414,580 27,455442,0344 The appearance of the sump will change with steeper side slopes. Some nice trees will be lost. Significant impact to the existing animals and plants would occur. 4 702,934 20,591723,5241 No visual or other impacts to the park. Page 6 of 7 Based on the above summary, Alternate No. 3 is the most economic alternate. But this alternate probably has the second highest impact on the park. Therefore, it must be noted that the best solution, while not the most economic, is Alternate No. 4. Alternate No. 4 would better provide assurance of providing adequate storage for the Campus Park South area along with avoiding any significant changes to Campus Park South. A new sump would also provide for better infiltration, thus this is our recommendation. Respectfully Submitted, Richard Meyer, RCE 28104 Meyer Civil Engineering, Inc. 12 39 39 39 Re v . N o . D a t e R e v i s i o n D e s c r i p t i o n A p p r o v e d B y OF SHEET NO. Da t e Dra w n B y : PM : Au t o C A D F i l e : Da t e : File N o : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ph o n e 6 6 1 - 8 3 6 - 9 8 3 4 F A X 6 6 1 - 8 3 6 - 9 7 6 1 11 0 S . M o n t c l a i r S t . , S t e . 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Me y e r 1 4 CI T Y O F B A K E R S F I E L D CA M P U S P A R K S O U T H SU M P S T U D Y - A L T E R N A T E 1 RD M RD M CO B 1 1 0 0 4 D S 1 CO B - 1 1 - 0 0 4 6/2 2 / 1 1 Ric h a r d D . M e y e r R C E 2 8 1 0 4 N PI N O A K P A R K B L V D . CARVALHO C O U R T DISTRICT BLV D . HASSAM DR. TI L Y A R D C T . SITE PLAN - ALTERNATE 1 SECTION A-A 41 EXIST. BANK POND SURFACE @ ELEV. 344.0 FE N C E L I N E A A REVISE SLOPE TO 4:1 AND CONSTRUCT BENCH ON WEST SIDE REVISED SUMP & OVERFLOW AREA CAPACITY AVAILABLE: 25.12 AF @ W.S. ELEV. 353.0 REMOVE AND REPLACE TREES AS NEEDED OVERFLOW AREA EXCAVATE 18" BENCH MAX. POND ELEV. 344.0 4:1 EX I S T . 4 2 " S . D . EX I S T . 3 6 " S . D . EXIST. 42" S.D. MAX. W.S. ELEV. 353.0 CONSTRUCT EMERGENCY OVER-POUR STRUCTURE 12 39 39 39 Re v . N o . D a t e R e v i s i o n D e s c r i p t i o n A p p r o v e d B y OF SHEET NO. Da t e Dra w n B y : PM : Au t o C A D F i l e : Da t e : File N o : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ph o n e 6 6 1 - 8 3 6 - 9 8 3 4 F A X 6 6 1 - 8 3 6 - 9 7 6 1 11 0 S . M o n t c l a i r S t . , S t e . 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Me y e r 2 4 CI T Y O F B A K E R S F I E L D CA M P U S P A R K S O U T H RD M RD M CO B 1 1 0 0 4 D S 1 CO B - 1 1 - 0 0 4 6/2 2 / 1 1 Ric h a r d D . M e y e r R C E 2 8 1 0 4 N PI N O A K P A R K B L V D . CARVALH O C O U R T DISTRICT BL V D . HASSAM DR . TI L Y A R D C T . SITE PLAN - ALTERNATE 2 SUMP TO REMAIN AS IS ALTERNATE 2a CONSTRUCT LIFT STATION TO DISPOSE 5.40 AF TO 39" SEWER FOR 100 YR EVENT ALTERNATE 2b CONSTRUCT OVER POUR STRUCTURE TO DISPOSE 24.8 AF TO 39" SEWER FOR 100 YR EVENT EXIST. 39" TRU N K S E W E R EX I S T . 4 2 " S . D . EX I S T . 3 6 " S . D . EXIST. 42" S.D. 12 39 39 39 Re v . N o . D a t e R e v i s i o n D e s c r i p t i o n A p p r o v e d B y OF SHEET NO. Da t e Dra w n B y : PM : Au t o C A D F i l e : Da t e : File N o : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ph o n e 6 6 1 - 8 3 6 - 9 8 3 4 F A X 6 6 1 - 8 3 6 - 9 7 6 1 11 0 S . M o n t c l a i r S t . , S t e . 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Me y e r 3 4 CI T Y O F B A K E R S F I E L D CA M P U S P A R K S O U T H SU M P S T U D Y - A L T E R N A T E 3 RD M RD M CO B 1 1 0 0 4 D S 1 CO B - 1 1 - 0 0 4 6/2 2 / 1 1 Ric h a r d D . M e y e r R C E 2 8 1 0 4 N PI N O A K P A R K B L V D . CARVALHO C O U R T DISTRICT BLV D . HASSAM DR. TI L Y A R D C T . SITE PLAN - ALTERNATE 3 SECTION A-A 41 EXIST. BANK ROCK AND COBBLE EDGE POND SURFACE @ ELEV. 344.0 FE N C E L I N E REVISE SLOPE TO 4:1 SLOPE TO REMAIN UNDISTURBED IF STEEPER THAN 4:1 REVISED SUMP CAPACITY AVAILABLE: 25.09 AF @ W.S. ELEV. 353.0 REMOVE AND REPLACE TREES AS NEEDED EX I S T . 4 2 " S . D . EX I S T . 3 6 " S . D . EXIST. 42" S.D. A A MAX. POND ELEV. 344.0 CONSTRUCT EMERGENCY OVER-POUR STRUCTURE Re v . N o . D a t e R e v i s i o n D e s c r i p t i o n A p p r o v e d B y OF SHEET NO. Da t e Dra w n B y : PM : Au t o C A D F i l e : Da t e : File N o : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ph o n e 6 6 1 - 8 3 6 - 9 8 3 4 F A X 6 6 1 - 8 3 6 - 9 7 6 1 11 0 S . M o n t c l a i r S t . , S t e . 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Me y e r 4 4 CI T Y O F B A K E R S F I E L D CA M P U S P A R K S O U T H SU M P S T U D Y - A L T E R N A T E 4 RD M RD M CO B 1 1 0 0 4 D S 1 CO B - 1 1 - 0 0 4 6/2 2 / 1 1 Ric h a r d D . M e y e r R C E 2 8 1 0 4 PIN OAK PARK BLVD. SITE PLAN - ALTERNATE 4 WH I T E L N . KILTERBURY LN. BE L L O W S A V E . CONSTRUCT NEW 36" DRAIN TO NEW SUMP NEW SUMP CAPACITY AVAILABLE: 6.00 AF @ W.S. ELEV. 353.0 TOTAL SYSTEM CAPACITY AVAILABLE: 24.8 AF @ W.S. ELEV. 353.0 368' 20 4 ' EXISTING TOWER LINE EASEMENT INVERT ELEV. 346.0 CA R V A L H O C T . HE E L Y C T . CAMPUS PARK SOUTH SUMP PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011 Feature:ALTERNATE 1 - Excavate Sump into Park on West File: Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS 1.Mobilization 1LS30600.0030,600 2.Clearing and Grubbing 3.1 AC1000.003,100 3.Grading11616CY5.0058,080 4.Tree Replacement41EA500.0020,500 5.Reinstall Lights and Electrical2EA4000.008,000 6.Reinstall Fence and Curb355LF40.0014,200 7.Reseed or Replace Turf & Irrigation System3.1 AC55000.00170,500 8.Emergency Over-pour Structure to 39" Sewer 1LS92000.0092,000 9.SWPPP1LS8000.008,000 10.Handling of Geese and Turtles1LS5000.005,000 11.Dust Control Plan1LS3000.003,000 SUBTOTAL:412,980 12.Contingency:15%61,947 SUBTOTAL CONSTRUCTION ITEMS:474,927 13.Design Engineering:1LS38000 14.Construction Inspection:1LS14400 SUBTOTAL ENGINEERING ITEMS:52,400 TOTAL PROJECT:527,327 Period, YearsInterest Rate Item No.Item Description405%TOTALS Annual Operation and Maintenance 1.Cleanup of Park after Major Rain - Labor 1280 21,964 2.Cleanup of Park after Major Rain - Equipment 1920 32,945 54,909 TOTAL:582,236 ` Annual Cost Present Worth Meyer Civil Engineering, Inc. 110 S. Montclair St #104, Bakersfield, CA 93309 Page 1 of 5 ALT1 PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011 Feature:ALTERNATE 2a - Install Lift Station and Pump to Sewer File: Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS 1.Mobilization 1LS20800.0020,800 2.Clearing and Grubbing 0.25 AC2000.00500 3.Electrical Installation1LS25000.0025,000 4.Lift Station1LS175000.00175,000 5.New Manhole on Sewer 1LS12000.0012,000 6.Discharge Line to Sewer 95LF325.0030,875 7.SWPPP1LS8000.008,000 8.Handling of Geese and Turtles1LS5000.005,000 9.Dust Control Plan1LS3000.003,000 SUBTOTAL:280,175 10.Contingency:15%42,026 SUBTOTAL CONSTRUCTION ITEMS:322,201 11.Design Engineering:1LS25800 12.Construction Inspection:1LS24000 SUBTOTAL ENGINEERING ITEMS:49,800 TOTAL PROJECT:372,001 Period, YearsInterest Rate Item No.Item Description405%TOTALS Annual Operation and Maintenance 1. Cleanup of Pump Station after Major Rain - Labor64010,982 2.Exercise Pump Station192032,945 3.Electric Costs33572 4.City Flow Surcharge Costs (7.44 AF per Year)364562,548 107,048 TOTAL:479,049 ` Annual Cost Present Worth Meyer Civil Engineering, Inc. 110 S. Montclair St #104, Bakersfield, CA 93309 Page 2 of 5 ALT2a PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011 Feature:ALTERNATE 2b - Install Overpour Structure and Pipe to Sewer File: Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS 1.Mobilization 1LS15100.0015,100 2.Clearing and Grubbing 0.25 AC2000.00500 3.New Pond Control Structure 1LS92000.0092,000 4.New Manhole on Sewer 1LS12000.0012,000 5.Discharge Line to Sewer 95LF750.0071,250 6.SWPPP1LS8000.008,000 7.Handling of Geese and Turtles1LS5000.005,000 SUBTOTAL:203,850 8.Contingency:15%30,578 SUBTOTAL CONSTRUCTION ITEMS:234,428 9.Design Engineering:1LS18800 10.Construction Inspection:1LS19200 SUBTOTAL ENGINEERING ITEMS:38,000 TOTAL PROJECT:272,428 Period, YearsInterest Rate Item No.Item Description405%TOTALS Annual Operation and Maintenance 1.Cleanup of Structure after Major Rain - Labor3205,491 4.City Flow Surcharge Costs (88.8 AF per Year)43547747,218 752,709 TOTAL:1,025,137 ` Annual Cost Present Worth Meyer Civil Engineering, Inc. 110 S. Montclair St #104, Bakersfield, CA 93309 Page 3 of 5 ALT2b PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011 Feature:ALTERNATE 3 - Excavate Existing Sump to Steeper Side slopes File: Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS 1.Mobilization 1LS23600.0023,600 2.Clearing and Grubbing 2.3 AC1000.002,300 3.Grading11616CY5.0058,080 4.Emergency Over-pour Structure to 39" Sewer 1LS92000.0092,000 5.Tree Replacement8EA1000.008,000 6.Reinstall Fence and Curb1240LF40.0049,600 7.Pond Landscaping (4:1 Slope)1.25 AC55000.0068,750 8.SWPPP1LS8000.008,000 9.Handling of Geese and Turtles1LS5000.005,000 10.Dust Control Plan1LS3000.003,000 SUBTOTAL:318,330 11.Contingency:15%47,750 SUBTOTAL CONSTRUCTION ITEMS:366,080 12.Design Engineering:1LS29300 13.Construction Inspection:1LS19200 SUBTOTAL ENGINEERING ITEMS:48,500 TOTAL PROJECT:414,580 Period, YearsInterest Rate Item No.Item Description405%TOTALS Annual Operation and Maintenance 1.Annual Maintenance of Sump - Labor 640 10,982 2.Annual Maintenance of Sump - Equipment96016,473 27,455 TOTAL:442,034 ` Annual Cost Present Worth Meyer Civil Engineering, Inc. 110 S. Montclair St #104, Bakersfield, CA 93309 Page 4 of 5 ALT3 PROJECT:City of Bakersfield - Campus Park South Sump Date:6/22/2011 Feature:ALTERNATE 4 -Construct New Sump and Storm Drain File: Item No.Item Description QuantityUnitUnit PriceExtensionTOTALS 1.Mobilization 1LS36300.0036,300 2.Clearing and Grubbing 2.3 AC1000.002,300 3.Grading, New Sump26400CY4.00105,600 4.36" Storm Drain1270LF200.00254,000 5.Manholes4EA4500.0018,000 6.Outlet Structure1LS12000.0012,000 7.Repair Sewer Laterals 6EA500.003,000 8.Sump Fence and Curb1145LF42.0048,090 9.SWPPP1LS8000.008,000 10.Dust Control Plan1LS3000.003,000 SUBTOTAL:490,290 11.Contingency:15%73,544 SUBTOTAL CONSTRUCTION ITEMS:563,834 12.Design Engineering:1LS45100 13.Construction Inspection:1LS24000 SUBTOTAL ENGINEERING ITEMS:69,100 14.Right of Way Purchase1LS70000 SUBTOTAL R/W ITEMS:70,000 TOTAL PROJECT:702,934 Period, YearsInterest Rate Item No.Item Description405%TOTALS Annual Operation and Maintenance 1.Annual Maintenance of Sump - Labor 480 8,236 2.Annual Maintenance of Sump - Equipment720 12,355 20,591 TOTAL:723,524 ` Annual Cost Present Worth Meyer Civil Engineering, Inc. 110 S. Montclair St #104, Bakersfield, CA 93309 Page 5 of 5 ALT4 Ca m p u s P a r k S o u t h S u m p C h a r a c t e r i s t i c s 5/26/2011 Al t e r n a t e  No .  1 Co n t o u r A r e a ,  SF V o l u m e ,  AF T o t a l   Vo l u m e ,  AF 35 0 . 0 0 3 4 5 . 0 0 3 4 4 . 0 0 Ma x  WS 3 5 3 1 3 5 2 1 0 2 . 9 7 2 5 . 1 5 8 . 2 1 1 7 . 9 2 1 9 . 2 7 35 2 1 2 3 6 9 4 2 . 7 3 2 2 . 1 8 5 . 2 3 1 4 . 9 5 1 6 . 2 9 35 1 1 1 3 7 5 6 2 . 5 1 1 9 . 4 5 2 . 5 1 1 2 . 2 2 1 3 . 5 7 Ab o v e  Ex i s t  WS 35 0 1 0 4 7 7 5 2 . 3 1 1 6 . 9 4 0 . 0 0 9 . 7 1 1 1 . 0 6 Be l o w  Ex i s t  WS 34 9 9 6 7 5 4 2 . 1 3 1 4 . 6 3 7. 4 0 8 . 7 5 34 8 8 8 9 8 9 1 . 9 5 1 2 . 5 0 5. 2 7 6 . 6 2 34 7 8 0 9 5 9 1 . 7 6 1 0 . 5 5 3. 3 2 4 . 6 6 34 6 7 2 4 4 5 1 . 5 6 8 . 7 9 1. 5 6 2 . 9 0 34 5 6 3 0 5 8 1 . 3 5 7 . 2 3 0. 0 0 1 . 3 5 34 4 5 4 4 0 2 1 . 1 2 5 . 8 8 0 34 3 4 3 5 8 3 0 . 9 5 4 . 7 6 34 2 3 9 5 5 3 0 . 8 4 3 . 8 0 34 1 3 3 9 7 8 0 . 7 2 2 . 9 6 34 0 2 9 0 1 4 0 . 6 1 2 . 2 4 33 9 2 4 3 0 5 0 . 5 1 1 . 6 2 33 8 2 0 1 3 7 0 . 4 2 1 . 1 1 33 7 1 6 2 5 3 0 . 3 3 0 . 7 0 33 6 1 2 8 1 3 0 . 2 5 0 . 3 6 33 5 8 5 9 1 0 . 1 2 0 . 1 2 33 4 1 6 2 0 0 . 0 0 0 . 0 0 35 3 1 1 1 8 1 7 3 . 7 6 3. 7 6 3 . 7 6 35 1 . 5 1 0 6 7 4 5 0 . 0 0 SU B T O T A L : 21 . 6 8 2 3 . 0 3 Si d e s l o p e  cu t : 2. 1 2 2 . 0 9 TO T A L : 23 . 8 0 2 5 . 1 2 Se t  Po n d  At  W. S . Av a i l a b l e  in  Pa r k  (1 8 "   de e p  su m p ) : 33 0 33 5 34 0 34 5 35 0 35 5 0. 0 0 1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 C o n t o u r Volume, AF Su m p  Volume Above Exist WS Below Exist WS Me y e r Ci v i l E n g i n e e r i n g , I n c . 1 1 0 S . M o n t c l a i r S t # 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Pa g e  1 of  1 Exist & Alt1 Sump Volume RE S E R V O I R R O U T E - S T O R A G E I N D I C A T I O N De l t a T ( h r s ) : 0 . 1 0 Re s e r v o i r C h a r a c t e r i s t i c s : Di s c h . , ( c f s ) S t o r a g e , A F S / T + Q / 2 , ( c f s ) Q 1 : 3. 9 2 S1 : 1. 3 5 1 6 5 . 1 Q 2 : 3. 7 7 S2 : 4. 6 6 5 6 6 . 3 Q 3 : 3. 6 3 S3 : 8. 7 5 1 0 6 0 . 2 Q 4 : 3. 4 8 S4 : 13 . 5 7 1 6 4 3 . 6 Q 5 : 3. 4 1 S5 : 16 . 2 9 1 9 7 3 . 3 Q 6 : 3. 3 3 S6 : 19 . 2 7 2 3 3 2 . 9 P e a k I n f l o w ( c f s ) : 14 8 . 3 5 P e a k O u t f l o w ( c f s ) : 3. 9 2 M a x . S t o r a g e ( a f ) : 19 . 3 0 Ba s i n : Re c t a n g u l a r B a s i n V a l u e s : De p t h I n c r e m e n t : 1. 0 0 f t . Ti m e , H r s In f l o w , cf s In f l o w , Av e I S/ T + Q/ 2 O 2 ' O 2 ' ' Ou t f l o w , C F S St o r a g e Vo l , A F Ou t l e t T y p e : Pu m p Fr e e b o a r d : 1. 0 0 f t . 00 0. 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 Lo w e s t C u r b F L : 35 4 . 1 0 e l e v . 0. 1 0 0 . 0 7 5 0. 0 4 0 . 0 4 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 Ma x i m u m W . S . 35 3 . 1 0 e l e v . 0. 2 0 0 . 3 2 0. 2 0 0 . 2 3 0 . 0 1 0 . 0 0 0 . 0 1 0 . 0 0 Ba s i n I n v e r t : 33 4 . 0 0 e l e v . 0. 3 0 0 . 7 6 6 0. 5 4 0 . 7 7 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 1 0. 4 0 1 . 2 8 9 1. 0 3 1 . 7 8 0 . 0 4 0 . 0 0 0 . 0 4 0 . 0 2 De p t h , fe e t WS Ar e a , S. F . Ad d Vo l u m e , C . F . To t a l Vo l u m e , A . F . Ou t l e t Di s c h a r ge , C. F . S . Elev. 0. 5 0 1 . 7 7 3 1. 5 3 3 . 2 7 0 . 0 8 0 . 0 0 0 . 0 8 0 . 0 3 0. 6 0 2 . 1 5 1. 9 6 5 . 1 5 0 . 1 2 0 . 0 0 0 . 1 2 0 . 0 5 0. 0 0 5 4 4 0 2 0 0 . 0 0 0 3 . 9 9 344.00 0. 7 0 2 . 4 2 3 2. 2 9 7 . 3 2 0 . 1 7 0 . 0 0 0 . 1 7 0 . 0 7 1. 0 0 6 3 0 5 8 5 8 7 3 0 1 . 3 4 8 3 . 9 2 * 3 4 5 . 0 0 0. 8 0 2 . 6 0 3 2. 5 1 9 . 6 6 0 . 2 3 0 . 0 0 0 . 2 3 0 . 0 9 2. 0 0 7 2 4 4 5 6 7 7 5 2 2 . 9 0 4 3 . 8 5 346.00 0. 9 0 2 . 7 2 6 2. 6 6 1 2 . 0 9 0 . 2 9 0 . 0 0 0 . 2 9 0 . 1 1 3. 0 0 8 0 9 5 9 7 6 7 0 2 4 . 6 6 4 3 . 7 7 * 3 4 7 . 0 0 1. 0 0 2 . 8 1 2 2. 7 7 1 4 . 5 7 0 . 3 5 0 . 0 0 0 . 3 5 0 . 1 3 4. 0 0 8 8 9 8 9 8 4 9 7 4 6 . 6 1 5 3 . 7 0 348.00 1. 1 0 2 . 8 7 2. 8 4 1 7 . 0 7 0 . 4 1 0 . 0 0 0 . 4 1 0 . 1 5 5. 0 0 9 6 7 5 4 9 2 8 7 2 8 . 7 4 7 3 . 6 3 * 3 4 9 . 0 0 1. 2 0 2 . 9 1 2. 8 9 1 9 . 5 5 0 . 4 6 0 . 0 0 0 . 4 6 0 . 1 7 6. 0 0 1 0 4 7 7 5 1 0 0 7 6 5 1 1 . 0 6 0 3 . 5 5 350.00 1. 3 0 2 . 9 3 8 2. 9 2 2 2 . 0 1 0 . 5 2 0 . 0 0 0 . 5 2 0 . 1 9 7. 0 0 1 1 3 7 5 6 1 0 9 2 6 6 1 3 . 5 6 9 3 . 4 8 * 3 5 1 . 0 0 1. 4 0 2 . 9 5 7 2. 9 5 2 4 . 4 4 0 . 5 8 0 . 0 0 0 . 5 8 0 . 2 1 8. 0 0 1 2 3 6 9 4 1 1 8 7 2 5 1 6 . 2 9 4 3 . 4 1 * 3 5 2 . 0 0 1. 5 0 2 . 9 7 1 2. 9 6 2 6 . 8 2 0 . 6 4 0 . 0 0 0 . 6 4 0 . 2 3 9. 0 0 1 3 5 2 1 0 1 2 9 4 5 2 1 9 . 2 6 6 3 . 3 3 * 3 5 3 . 0 0 1. 6 0 2 . 9 8 2. 9 8 2 9 . 1 6 0 . 6 9 0 . 0 0 0 . 6 9 0 . 2 5 At P e a k I n f l o w : 5. 3 6 9. 5 7 4 349.36 1. 7 0 2 . 9 8 7 2. 9 8 3 1 . 4 5 0 . 7 5 0 . 0 0 0 . 7 5 0 . 2 7 At P e a k S t o r a g e : 9. 0 0 19 . 3 0 2 353.00 1. 8 0 2 . 9 9 1 2. 9 9 3 3 . 7 0 0 . 8 0 0 . 0 0 0 . 8 0 0 . 2 8 At P e a k O u t f l o w : 0. 9 3 1. 5 3 1 344.93 1. 9 0 2 . 9 9 4 2. 9 9 3 5 . 8 9 0 . 8 5 0 . 0 0 0 . 8 5 0 . 3 0 020406080 10 0 12 0 14 0 16 0 0 5 10 15 20 Discharge, CFS Ti m e , H R S De t e n t i o n B a s i n R o u t i n g Inflow, cfs Outflow, CFS Me y e r Ci v i l E n g i n e e r i n g , I n c . 1 1 0 S . M o n t c l a i r S t # 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Pa g e 1 o f 2 DET BASIN - Pumped Ti m e , H r s In f l o w , cf s In f l o w , Av e I S/ T + Q/ 2 O 2 ' O 2 ' ' Ou t f l o w , C F S St o r a g e Vo l , A F Ou t l e t T y p e : Pu m p 2. 0 0 2 . 9 9 6 3. 0 0 3 8 . 0 3 0 . 9 0 0 . 0 0 0 . 9 0 0 . 3 2 Pu m p F l o w s Di a m e t e r : 8 i n c h e s 2. 1 0 2 . 9 9 8 3. 0 0 4 0 . 1 3 0 . 9 5 0 . 0 0 0 . 9 5 0 . 3 4 Ne t L i f t F l o w , CF S Flo w , GP M Ve l o c i t y , F P S Ve l He a d K H e a d LossTotal HeadHP 2. 2 0 3 . 0 0 2 3. 0 0 4 2 . 1 8 1 . 0 0 0 . 0 0 1 . 0 0 0 . 3 5 0. 0 1 3 . 9 9 1 7 9 1 1 1 . 4 2 2 . 0 3 6 1 2 . 1 6 1 2 . 1 7 1 1 . 0 2. 3 0 3 . 0 1 3. 0 1 4 4 . 1 8 1 . 0 5 0 . 0 0 1 . 0 5 0 . 3 7 1. 0 1 3 . 9 2 1 7 5 9 1 1 . 2 2 1 . 9 6 6 1 1 . 7 3 1 2 . 7 4 1 1 . 3 2. 4 0 3 . 0 2 6 3. 0 2 4 6 . 1 5 1 . 1 0 0 . 0 0 1 . 1 0 0 . 3 8 2. 0 0 3 . 8 5 1 7 2 7 1 1 . 0 2 1 . 8 9 6 1 1 . 3 1 1 3 . 3 1 1 1 . 6 2. 5 0 3 . 0 4 9 3. 0 4 4 8 . 0 9 1 . 1 4 0 . 0 0 1 . 1 4 0 . 4 0 3. 0 1 3 . 7 7 1 6 9 4 1 0 . 8 1 1 . 8 1 6 1 0 . 8 9 1 3 . 9 0 1 1 . 9 2. 6 0 3 . 0 7 8 3. 0 6 5 0 . 0 2 1 . 1 9 0 . 0 0 1 . 1 9 0 . 4 2 4. 0 0 3 . 7 0 1 6 6 2 1 0 . 6 1 1 . 7 5 6 1 0 . 4 8 1 4 . 4 8 1 2 . 2 2. 7 0 3 . 1 1 2 3. 1 0 5 1 . 9 2 1 . 2 3 0 . 0 0 1 . 2 3 0 . 4 3 5. 0 0 3 . 6 3 1 6 2 9 1 0 . 4 0 1 . 6 8 6 1 0 . 0 7 1 5 . 0 7 1 2 . 4 2. 8 0 3 . 1 5 3. 1 3 5 3 . 8 2 1 . 2 8 0 . 0 0 1 . 2 8 0 . 4 5 6. 0 1 3 . 5 5 1 5 9 6 1 0 . 1 8 1 . 6 1 6 9 . 6 6 1 5 . 6 7 1 2 . 6 2. 9 0 3 . 1 9 3. 1 7 5 5 . 7 2 1 . 3 2 0 . 0 0 1 . 3 2 0 . 4 6 7. 0 1 3 . 4 8 1 5 6 3 9 . 9 7 1 . 5 4 6 9 . 2 6 1 6 . 2 7 1 2 . 8 3. 0 0 3 . 2 3 5 3. 2 1 5 7 . 6 1 1 . 3 7 0 . 0 0 1 . 3 7 0 . 4 8 8. 0 1 3 . 4 1 1 5 2 9 9 . 7 5 1 . 4 8 6 8 . 8 7 1 6 . 8 8 1 3 . 0 3. 1 0 3 . 2 8 2 3. 2 6 5 9 . 5 0 1 . 4 1 0 . 0 0 1 . 4 1 0 . 4 9 9. 0 0 3 . 3 3 1 4 9 6 9 . 5 4 1 . 4 1 6 8 . 4 8 1 7 . 4 8 1 3 . 2 3. 2 0 3 . 3 2 7 3. 3 0 6 1 . 3 9 1 . 4 6 0 . 0 0 1 . 4 6 0 . 5 1 3. 3 0 3 . 3 6 5 3. 3 5 6 3 . 2 8 1 . 5 0 0 . 0 0 1 . 5 0 0 . 5 2 3. 4 0 3 . 4 0 3 3. 3 8 6 5 . 1 6 1 . 5 5 0 . 0 0 1 . 5 5 0 . 5 4 3. 5 0 3 . 4 4 4 3. 4 2 6 7 . 0 4 1 . 5 9 0 . 0 0 1 . 5 9 0 . 5 6 3. 6 0 3 . 4 8 9 3. 4 7 6 8 . 9 2 1 . 6 4 0 . 0 0 1 . 6 4 0 . 5 7 3. 7 0 3 . 5 3 4 3. 5 1 7 0 . 7 9 1 . 6 8 0 . 0 0 1 . 6 8 0 . 5 9 3. 8 0 3 . 5 8 1 3. 5 6 7 2 . 6 7 1 . 7 2 0 . 0 0 1 . 7 2 0 . 6 0 3. 9 0 3 . 6 2 7 3. 6 0 7 4 . 5 5 1 . 7 7 0 . 0 0 1 . 7 7 0 . 6 2 4. 0 0 3 . 6 7 2 3. 6 5 7 6 . 4 3 1 . 8 1 0 . 0 0 1 . 8 1 0 . 6 3 4. 1 0 3 . 7 1 8 3. 7 0 7 8 . 3 1 1 . 8 6 0 . 0 0 1 . 8 6 0 . 6 5 4. 2 0 3 . 7 6 3 3. 7 4 8 0 . 1 9 1 . 9 0 0 . 0 0 1 . 9 0 0 . 6 6 4. 3 0 3 . 8 0 8 3. 7 9 8 2 . 0 8 1 . 9 5 0 . 0 0 1 . 9 5 0 . 6 8 4. 4 0 3 . 8 5 3 3. 8 3 8 3 . 9 6 1 . 9 9 0 . 0 0 1 . 9 9 0 . 6 9 4. 5 0 3 . 8 9 8 3. 8 8 8 5 . 8 4 2 . 0 4 0 . 0 0 2 . 0 4 0 . 7 1 4. 6 0 3 . 9 4 3 3. 9 2 8 7 . 7 3 2 . 0 8 0 . 0 0 2 . 0 8 0 . 7 2 4. 7 0 3 . 9 8 8 3. 9 7 8 9 . 6 1 2 . 1 3 0 . 0 0 2 . 1 3 0 . 7 4 4. 8 0 4 . 0 3 3 4. 0 1 9 1 . 5 0 2 . 1 7 0 . 0 0 2 . 1 7 0 . 7 5 4. 9 0 4 . 0 7 8 4. 0 6 9 3 . 3 8 2 . 2 2 0 . 0 0 2 . 2 2 0 . 7 7 5. 0 0 4 . 1 1 9 4. 1 0 9 5 . 2 6 2 . 2 6 0 . 0 0 2 . 2 6 0 . 7 9 5. 1 0 4 . 1 6 4. 1 4 9 7 . 1 4 2 . 3 0 0 . 0 0 2 . 3 0 0 . 8 0 5. 2 0 4 . 2 0 3 4. 1 8 9 9 . 0 2 2 . 3 5 0 . 0 0 2 . 3 5 0 . 8 2 5. 3 0 4 . 2 5 4 4. 2 3 1 0 0 . 9 0 2 . 3 9 0 . 0 0 2 . 3 9 0 . 8 3 5. 4 0 4 . 3 0 5 4. 2 8 1 0 2 . 7 8 2 . 4 4 0 . 0 0 2 . 4 4 0 . 8 5 3. 2 0 3. 3 0 3. 4 0 3. 5 0 3. 6 0 3. 7 0 3. 8 0 3. 9 0 4. 0 0 4. 1 0 0 5 10 15 2025 Q, cfs St o r a g e , A F St o r a g e v s D i s c h a r g e Me y e r Ci v i l E n g i n e e r i n g , I n c . 1 1 0 S . M o n t c l a i r S t # 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Pa g e 2 o f 2 DET BASIN - Pumped RE S E R V O I R R O U T E - S T O R A G E I N D I C A T I O N De l t a T ( h r s ) : 0 . 1 0 Re s e r v o i r C h a r a c t e r i s t i c s : Di s c h . , ( c f s ) S t o r a g e , A F S / T + Q / 2 , ( c f s ) Q 1 : 1. 6 8 S1 : 1. 3 5 1 6 4 . 0 Q 2 : 2. 9 1 S2 : 4. 6 6 5 6 5 . 9 Q 3 : 3. 7 6 S3 : 8. 7 5 1 0 6 0 . 3 Q 4 : 4. 4 5 S4 : 13 . 5 7 1 6 4 4 . 1 Q 5 : 4. 7 5 S5 : 16 . 2 9 1 9 7 4 . 0 Q 6 : 5. 0 4 S6 : 19 . 2 7 2 3 3 3 . 7 P e a k I n f l o w ( c f s ) : 14 8 . 3 5 P e a k O u t f l o w ( c f s ) : 5. 0 4 M a x . S t o r a g e ( a f ) : 19 . 2 3 Ti m e , H r s In f l o w , cf s In f l o w , Av e I S/ T + Q/ 2 O 2 ' O 2 ' ' Ou t f l o w , CF S St o r a g e Vo l , A F Ba s i n : 00 0. 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 De p t h I n c r e m e n t : 1 . 0 0 f t . 0. 1 0 0 . 0 7 5 0. 0 4 0 . 0 4 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 Ou t l e t T y p e ( W e i r / O r i f i c e ) : or i f i c e 0. 2 0 0 . 3 2 0. 2 0 0 . 2 3 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 Re c t a n g u l a r W e i r V a l u e s : W i d t h : f t . 0. 3 0 0 . 7 6 6 0. 5 4 0 . 7 8 0 . 0 1 0 . 0 0 0 . 0 1 0 . 0 1 Cr e s t S e t t i n g : f t . 0. 4 0 1 . 2 8 9 1. 0 3 1 . 7 9 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 2 Ci r c u l a r O r i f i c e V a l u e s : 0. 5 0 1 . 7 7 3 1. 5 3 3 . 3 1 0 . 0 3 0 . 0 0 0 . 0 3 0 . 0 3 Di a m e t e r : 8 i n . 0. 6 0 2 . 1 5 1. 9 6 5 . 2 3 0 . 0 5 0 . 0 0 0 . 0 5 0 . 0 5 C/ L S e t t i n g : 3 4 4 f t . 0. 7 0 2 . 4 2 3 2. 2 9 7 . 4 7 0 . 0 8 0 . 0 0 0 . 0 8 0 . 0 7 0. 8 0 2 . 6 0 3 2. 5 1 9 . 9 0 0 . 1 0 0 . 0 0 0 . 1 0 0 . 0 9 Fr e e b o a r d : 1 . 0 0 f t . 0. 9 0 2 . 7 2 6 2. 6 6 1 2 . 4 7 0 . 1 3 0 . 0 0 0 . 1 3 0 . 1 1 Lo w e s t C u r b F L : 3 5 4 . 1 0 e l e v . 1. 0 0 2 . 8 1 2 2. 7 7 1 5 . 1 1 0 . 1 5 0 . 0 0 0 . 1 5 0 . 1 4 Ma x i m u m W . S . 3 5 3 . 1 0 e l e v . 1. 1 0 2 . 8 7 2. 8 4 1 7 . 7 9 0 . 1 8 0 . 0 0 0 . 1 8 0 . 1 6 Ba s i n I n v e r t : 3 3 4 . 0 0 e l e v . 1. 2 0 2 . 9 1 2. 8 9 2 0 . 5 0 0 . 2 1 0 . 0 0 0 . 2 1 0 . 1 8 1. 3 0 2 . 9 3 8 2. 9 2 2 3 . 2 2 0 . 2 4 0 . 0 0 0 . 2 4 0 . 2 0 1. 4 0 2 . 9 5 7 2. 9 5 2 5 . 9 3 0 . 2 7 0 . 0 0 0 . 2 7 0 . 2 2 1. 5 0 2 . 9 7 1 2. 9 6 2 8 . 6 2 0 . 2 9 0 . 0 0 0 . 2 9 0 . 2 5 1. 6 0 2 . 9 8 2. 9 8 3 1 . 3 1 0 . 3 2 0 . 0 0 0 . 3 2 0 . 2 7 0 . 0 0 5 4 4 0 2 0 0 . 0 0 0 0 . 0 0 34 4 . 0 0 1. 7 0 2 . 9 8 7 2. 9 8 3 3 . 9 7 0 . 3 5 0 . 0 0 0 . 3 5 0 . 2 9 1 . 0 0 6 3 0 5 8 5 8 7 3 0 1 . 3 4 8 1 . 6 8 * 3 4 5 . 0 0 1. 8 0 2 . 9 9 1 2. 9 9 3 6 . 6 1 0 . 3 8 0 . 0 0 0 . 3 8 0 . 3 1 2 . 0 0 7 2 4 4 5 6 7 7 5 2 2 . 9 0 4 2 . 3 8 34 6 . 0 0 1. 9 0 2 . 9 9 4 2. 9 9 3 9 . 2 3 0 . 4 0 0 . 0 0 0 . 4 0 0 . 3 3 3 . 0 0 8 0 9 5 9 7 6 7 0 2 4 . 6 6 4 2 . 9 1 * 3 4 7 . 0 0 2. 0 0 2 . 9 9 6 3. 0 0 4 1 . 8 2 0 . 4 3 0 . 0 0 0 . 4 3 0 . 3 5 4 . 0 0 8 8 9 8 9 8 4 9 7 4 6 . 6 1 5 3 . 3 6 34 8 . 0 0 2. 1 0 2 . 9 9 8 3. 0 0 4 4 . 3 9 0 . 4 5 0 . 0 0 0 . 4 5 0 . 3 8 5 . 0 0 9 6 7 5 4 9 2 8 7 2 8 . 7 4 7 3 . 7 6 * 3 4 9 . 0 0 2. 2 0 3 . 0 0 2 3. 0 0 4 6 . 9 3 0 . 4 8 0 . 0 0 0 . 4 8 0 . 4 0 6 . 0 0 1 0 4 7 7 5 1 0 0 7 6 5 1 1 . 0 6 0 4 . 1 2 35 0 . 0 0 2. 3 0 3 . 0 1 3. 0 1 4 9 . 4 6 0 . 5 1 0 . 0 0 0 . 5 1 0 . 4 2 7 . 0 0 1 1 3 7 5 6 1 0 9 2 6 6 1 3 . 5 6 9 4 . 4 5 * 3 5 1 . 0 0 2. 4 0 3 . 0 2 6 3. 0 2 5 1 . 9 7 0 . 5 3 0 . 0 0 0 . 5 3 0 . 4 4 8 . 0 0 1 2 3 6 9 4 1 1 8 7 2 5 1 6 . 2 9 4 4 . 7 5 * 3 5 2 . 0 0 2. 5 0 3 . 0 4 9 3. 0 4 5 4 . 4 7 0 . 5 6 0 . 0 0 0 . 5 6 0 . 4 6 9 . 0 0 1 3 5 2 1 0 1 2 9 4 5 2 1 9 . 2 6 6 5 . 0 4 * 3 5 3 . 0 0 De p t h , fe e t Ar e a , S. F . Vo l u m e , C. F . Vo l u m e , A. F . Di s c h a r ge , E l e v . 020406080 10 0 12 0 14 0 16 0 0 5 1 0 1 5 2 0 Discharge, CFS Ti m e , H R S De t e n t i o n B a s i n R o u t i n g In f l o w , c f s Ou t f l o w , C F S Me y e r Ci v i l E n g i n e e r i n g , I n c . 1 1 0 S . M o n t c l a i r S t # 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Pa g e 1 o f 2 DET BASIN - Gravity Ti m e , H r s In f l o w , cf s In f l o w , Av e I S/ T + Q/ 2 O 2 ' O 2 ' ' Ou t f l o w , CF S St o r a g e Vo l , A F 2. 6 0 3 . 0 7 8 3. 0 6 5 6 . 9 8 0 . 5 8 0 . 0 0 0 . 5 8 0 . 4 8 At P e a k I n f l o w : 5. 8 1 1 0 . 6 1 2 34 9 . 8 1 2. 7 0 3 . 1 1 2 3. 1 0 5 9 . 4 9 0 . 6 1 0 . 0 0 0 . 6 1 0 . 5 0 At P e a k S t o r a g e : 8. 8 8 1 8 . 9 1 0 35 2 . 8 8 2. 8 0 3 . 1 5 3. 1 3 6 2 . 0 1 0 . 6 4 0 . 0 0 0 . 6 4 0 . 5 2 At P e a k O u t f l o w : 8. 9 9 1 9 . 2 2 7 35 2 . 9 9 2. 9 0 3 . 1 9 3. 1 7 6 4 . 5 5 0 . 6 6 0 . 0 0 0 . 6 6 0 . 5 4 3. 0 0 3 . 2 3 5 3. 2 1 6 7 . 1 0 0 . 6 9 0 . 0 0 0 . 6 9 0 . 5 6 3. 1 0 3 . 2 8 2 3. 2 6 6 9 . 6 7 0 . 7 1 0 . 0 0 0 . 7 1 0 . 5 8 Pu m p F l o w s Di a m e t e r : 8 i n c h e s 3. 2 0 3 . 3 2 7 3. 3 0 7 2 . 2 6 0 . 7 4 0 . 0 0 0 . 7 4 0 . 6 0 3. 3 0 3 . 3 6 5 3. 3 5 7 4 . 8 6 0 . 7 7 0 . 0 0 0 . 7 7 0 . 6 3 3. 4 0 3 . 4 0 3 3. 3 8 7 7 . 4 8 0 . 7 9 0 . 0 0 0 . 7 9 0 . 6 5 3. 5 0 3 . 4 4 4 3. 4 2 8 0 . 1 1 0 . 8 2 0 . 0 0 0 . 8 2 0 . 6 7 0. 0 1 3 . 9 9 1 7 9 1 1 1 . 4 2 2 . 0 3 6 1 2 . 1 6 1 2 . 1 7 1 1 . 0 3. 6 0 3 . 4 8 9 3. 4 7 8 2 . 7 5 0 . 8 5 0 . 0 0 0 . 8 5 0 . 6 9 1. 0 1 3 . 9 2 1 7 5 9 1 1 . 2 2 1 . 9 6 6 1 1 . 7 3 1 2 . 7 4 1 1 . 3 3. 7 0 3 . 5 3 4 3. 5 1 8 5 . 4 2 0 . 8 8 0 . 0 0 0 . 8 8 0 . 7 1 2. 0 0 3 . 8 5 1 7 2 7 1 1 . 0 2 1 . 8 9 6 1 1 . 3 1 1 3 . 3 1 1 1 . 6 3. 8 0 3 . 5 8 1 3. 5 6 8 8 . 1 0 0 . 9 0 0 . 0 0 0 . 9 0 0 . 7 4 3. 0 1 3 . 7 7 1 6 9 4 1 0 . 8 1 1 . 8 1 6 1 0 . 8 9 1 3 . 9 0 1 1 . 9 3. 9 0 3 . 6 2 7 3. 6 0 9 0 . 8 0 0 . 9 3 0 . 0 0 0 . 9 3 0 . 7 6 4. 0 0 3 . 7 0 1 6 6 2 1 0 . 6 1 1 . 7 5 6 1 0 . 4 8 1 4 . 4 8 1 2 . 2 4. 0 0 3 . 6 7 2 3. 6 5 9 3 . 5 2 0 . 9 6 0 . 0 0 0 . 9 6 0 . 7 8 5. 0 0 3 . 6 3 1 6 2 9 1 0 . 4 0 1 . 6 8 6 1 0 . 0 7 1 5 . 0 7 1 2 . 4 4. 1 0 3 . 7 1 8 3. 7 0 9 6 . 2 6 0 . 9 9 0 . 0 0 0 . 9 9 0 . 8 0 6. 0 1 3 . 5 5 1 5 9 6 1 0 . 1 8 1 . 6 1 6 9 . 6 6 1 5 . 6 7 1 2 . 6 4. 2 0 3 . 7 6 3 3. 7 4 9 9 . 0 1 1 . 0 1 0 . 0 0 1 . 0 1 0 . 8 3 7. 0 1 3 . 4 8 1 5 6 3 9 . 9 7 1 . 5 4 6 9 . 2 6 1 6 . 2 7 1 2 . 8 4. 3 0 3 . 8 0 8 3. 7 9 1 0 1 . 7 8 1 . 0 4 0 . 0 0 1 . 0 4 0 . 8 5 8. 0 1 3 . 4 1 1 5 2 9 9 . 7 5 1 . 4 8 6 8 . 8 7 1 6 . 8 8 1 3 . 0 4. 4 0 3 . 8 5 3 3. 8 3 1 0 4 . 5 7 1 . 0 7 0 . 0 0 1 . 0 7 0 . 8 7 9. 0 0 3 . 3 3 1 4 9 6 9 . 5 4 1 . 4 1 6 8 . 4 8 1 7 . 4 8 1 3 . 2 4. 5 0 3 . 8 9 8 3. 8 8 1 0 7 . 3 7 1 . 1 0 0 . 0 0 1 . 1 0 0 . 8 9 4. 6 0 3 . 9 4 3 3. 9 2 1 1 0 . 1 9 1 . 1 3 0 . 0 0 1 . 1 3 0 . 9 2 4. 7 0 3 . 9 8 8 3. 9 7 1 1 3 . 0 3 1 . 1 6 0 . 0 0 1 . 1 6 0 . 9 4 4. 8 0 4 . 0 3 3 4. 0 1 1 1 5 . 8 8 1 . 1 9 0 . 0 0 1 . 1 9 0 . 9 6 4. 9 0 4 . 0 7 8 4. 0 6 1 1 8 . 7 5 1 . 2 2 0 . 0 0 1 . 2 2 0 . 9 9 5. 0 0 4 . 1 1 9 4. 1 0 1 2 1 . 6 3 1 . 2 5 0 . 0 0 1 . 2 5 1 . 0 1 5. 1 0 4 . 1 6 4. 1 4 1 2 4 . 5 2 1 . 2 8 0 . 0 0 1 . 2 8 1 . 0 4 5. 2 0 4 . 2 0 3 4. 1 8 1 2 7 . 4 3 1 . 3 1 0 . 0 0 1 . 3 1 1 . 0 6 5. 3 0 4 . 2 5 4 4. 2 3 1 3 0 . 3 5 1 . 3 4 0 . 0 0 1 . 3 4 1 . 0 8 5. 4 0 4 . 3 0 5 4. 2 8 1 3 3 . 2 9 1 . 3 7 0 . 0 0 1 . 3 7 1 . 1 1 5. 5 0 4 . 3 5 4 4. 3 3 1 3 6 . 2 6 1 . 4 0 0 . 0 0 1 . 4 0 1 . 1 3 5. 6 0 4 . 3 9 8 4. 3 8 1 3 9 . 2 4 1 . 4 3 0 . 0 0 1 . 4 3 1 . 1 6 5. 7 0 4 . 4 4 3 4. 4 2 1 4 2 . 2 3 1 . 4 6 0 . 0 0 1 . 4 6 1 . 1 8 5. 8 0 4 . 4 8 6 4. 4 6 1 4 5 . 2 4 1 . 4 9 0 . 0 0 1 . 4 9 1 . 2 1 5. 9 0 4 . 5 3 4. 5 1 1 4 8 . 2 5 1 . 5 2 0 . 0 0 1 . 5 2 1 . 2 3 6. 0 0 4 . 5 7 4 4. 5 5 1 5 1 . 2 9 1 . 5 5 0 . 0 0 1 . 5 5 1 . 2 6 6. 1 0 4 . 6 2 4. 6 0 1 5 4 . 3 3 1 . 5 8 0 . 0 0 1 . 5 8 1 . 2 8 6. 2 0 4 . 6 7 2 4. 6 5 1 5 7 . 4 0 1 . 6 1 0 . 0 0 1 . 6 1 1 . 3 1 6. 3 0 4 . 7 3 6 4. 7 0 1 6 0 . 4 9 1 . 6 4 0 . 0 0 1 . 6 4 1 . 3 3 6. 4 0 4 . 8 1 7 4. 7 8 1 6 3 . 6 2 1 . 6 8 0 . 0 0 1 . 6 8 1 . 3 6 6. 5 0 4 . 9 1 5 4. 8 7 1 6 6 . 8 1 1 . 6 9 0 . 0 0 1 . 6 9 1 . 3 8 6. 6 0 5 . 0 2 9 4. 97 17 0 . 0 9 1 . 7 0 0 . 0 0 1 . 7 0 1 . 4 1 6. 7 0 5 . 1 5 4 5. 0 9 1 7 3 . 4 8 1 . 7 1 0 . 0 0 1 . 7 1 1 . 4 4 6. 8 0 5 . 2 8 6 5. 2 2 1 7 6 . 9 9 1 . 7 2 0 . 0 0 1 . 7 2 1 . 4 7 6. 9 0 5 . 4 2 5 5. 3 6 1 8 0 . 6 3 1 . 7 3 0 . 0 0 1 . 7 3 1 . 5 0 He a d Lo s s To t a l He a d HP K Ne t L i f t F l o w , CF S Fl o w , GP M Ve l o c i t y , F P S Ve l He a d 0. 0 0 1. 0 0 2. 0 0 3. 0 0 4. 0 0 5. 0 0 6. 0 0 0 5 1 0 1 5 2 0 2 5 Q, cfs St o r a g e , A F St o r a g e v s D i s c h a r g e Me y e r Ci v i l E n g i n e e r i n g , I n c . 1 1 0 S . M o n t c l a i r S t # 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Pa g e 2 o f 2 DET BASIN - Gravity Ca m p u s P a r k S o u t h S u m p C h a r a c t e r i s t i c s Al t e r n a t e  No .  3 5/25/2011 Co n t o u r A r e a ,  SF V o l u m e ,  AF T o t a l   Vo l u m e ,  AF 35 0 . 0 0 3 4 5 . 0 0 3 4 4 . 0 0 Ma x  WS 3 5 3 1 5 0 6 9 0 3 . 3 8 3 1 . 4 1 9 . 6 9 2 2 . 9 0 2 5 . 0 9 35 2 1 4 3 9 4 4 3 . 2 3 2 8 . 0 3 6 . 3 1 1 9 . 5 2 2 1 . 7 1 35 1 1 3 7 3 4 3 3 . 0 8 2 4 . 8 0 3 . 0 8 1 6 . 2 9 1 8 . 4 8 35 0 1 3 0 9 0 8 2 . 9 3 2 1 . 7 2 0 . 0 0 1 3 . 2 1 1 5 . 4 0 34 9 1 2 4 5 9 5 2 . 7 9 1 8 . 7 9 10 . 2 8 1 2 . 4 7 34 8 1 1 8 3 5 7 2 . 6 5 1 6 . 0 0 7. 4 9 9 . 6 8 34 7 1 1 2 1 0 6 2 . 5 0 1 3 . 3 5 4. 8 4 7 . 0 4 34 6 1 0 5 5 5 8 2 . 3 4 1 0 . 8 5 2. 3 4 4 . 5 4 34 5 9 8 7 3 5 2 . 1 9 8 . 5 1 0. 0 0 2 . 1 9 Ab o v e  Po n d  WS 34 4 9 2 2 1 9 1 . 5 6 6 . 3 2 0 Be l o w  Po n d  WS 34 3 4 3 5 8 3 0 . 9 5 4 . 7 6 34 2 3 9 5 5 3 0 . 8 4 3 . 8 0 34 1 3 3 9 7 8 0 . 7 2 2 . 9 6 34 0 2 9 0 1 4 0 . 6 1 2 . 2 4 33 9 2 4 3 0 5 0 . 5 1 1 . 6 2 33 8 2 0 1 3 7 0 . 4 2 1 . 1 1 33 7 1 6 2 5 3 0 . 3 3 0 . 7 0 33 6 1 2 8 1 3 0 . 2 5 0 . 3 6 33 5 8 5 9 1 0 . 1 2 0 . 1 2 33 4 1 6 2 0 0 . 0 0 0 . 0 0 Se t  Po n d  At  W. S . 33 0 33 5 34 0 34 5 35 0 35 5 0. 0 0 1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 4 0 . 0 0 C o n t o u r Volume, AF Su m p  Volume Above Pond WS Below Pond WS Me y e r Ci v i l E n g i n e e r i n g , I n c . 1 1 0 S . M o n t c l a i r S t # 1 0 4 , B a k e r s f i e l d , C A 9 3 3 0 9 Pa g e  1 of  1 Alt 3 Sump Volume PIPE: N:0.013 Design Point: SLOPE:0.00060 FT/FTQ (CFS):20.22 SIZES%DDn (FT)V (FPS)Q (CFS)V (FPS):2.78 39"00.0000.000.00Dn (FT):2.66 100.3250.980.42 200.6501.501.77 300.9751.893.96 401.3002.206.82 501.6252.4410.11 601.9502.6113.59 702.2752.7316.93 802.6002.7819.77 81.952.6632.7820.22 902.9252.7421.56 953.0882.6721.73 1003.2502.4420.23 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0510152025 DE P T H , F T Q, CFS FLOW RATE 39 inch at 0.0006FT/FT Design Point: `` 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 5 10 15 20 25 VE L O C I T Y , F P S FLOW, CFS PIPE HYDRAULICS 39 inch at 0.0006FT/FT Design Point: ````` Meyer Civil Engineering, Inc. 110 S. Montclair St #104, Bakersfiled, CA 93309 Page 1 of 1 Single Point