HomeMy WebLinkAboutDrainage Study For Tract 6557CIT
D�ROF SSION� ) �`
-47
EXP. �B
Q
OF C A1.�F®���
DRAINAGE STUDY
FOR TRACT 6557
CITY OF BAKERSFIELD
Project No. 2025005400
Prepared by:
STANTEC CONSULTING INC.
1400-18 th Street
Bakersfield, CA 93301-4428
Phone: (661) 616-0000
Prepared on: July 17, 2006
Roger D. Haney. Date
R.C.E 47354 Exp. 12/31/07
1.0 CHAPTER 1.....................................................................................................................1.3
1.1 INTRODUCTION..............................................................................................................1.3
1.1.1 Purpose.............................................................................................................1.3
1.2 WATERSHED DESCRIPTION..........................................................................................1.3
1.2.1 Location.............................................................................................................1.3
1.2.2 Land Use...........................................................................................................1.3
1.2.3 Soil Description..................................................................................................1.3
1.2.4 Topography........................................................................................................1.4
1.2.5 Drainage Sub areas....:......................................................................................1.4
1.3 METHODOLOGY.............................................................................................................1.4
1.4 SUMMARY.......................................................................................................................1.4
2.0 CHAPTER 2.....................................................................................................................2.5
2.1 HYDROLOGY CALCULATIONS.......................................................................................2.5
2.1.1 FIVE AND TEN YEAR FREQUENCY PEAK FLOW ANALYSIS TABLES ..........2.6
2.1.2 RETENTION BASIN CAPACITY CALCULATIONS............................................2.7
3.0 CHAPTER 3................................:....................................................................................3.8
3.1 HYDRAULICS CALCULATIONS.......................................................................................3.8
3.1.1 CATCH BASIN DESIGN.....................................................................................3.8
3.1.2 STORM DRAIN PIPE DESIGN..........................................................................3.9
3.1.3 CLOSED CONDUIT DESIGN MATERIAL AND DESIGN LIFE .........................3.10
4.0
APPENDIX.....................................................................................................................4.12
4.1
APPENDIX 1: SOIL SURVEY OF KERN COUNTY, CALIFORNIA .................................4.13
4.2
APPENDIX 2: CITY OF BAKERSFIELD URBAN RUNOFF COEFFICIENTS AND
1
INTENSITY VS. DURATION CURVE (STANDARDS D-1 & D-2) ...................................4.14
j 4.3
APPENDIX 3: TRACT 6557 RETENTION VOLUME CALCULATIONS ...........................4.15
4.4
APPENDIX 4: TRACT 6557 RETENTION BASIN DETAIL DRAWINGS .........................4.16
4.5
APPENDIX 5: CITY OF BAKERSFIELD STANDARD DRAINAGE BASIN,. STANDARD
CHAIN LINK FENCE AND STANDARD CHAIN LINK GATES (STANDARDS D-11, D-12
&
D-13).........................................................................................................................4.17
i 4.6
APPENDIX 6: DRAINAGE TO TRACT 6387...................................................................4.18
1 4.7
APPENDIX 7: TRACT 6557 RETENTION BASIN SOIL ABSORPTION EVALUATION...
4.19
4.8
APPENDIX 8: CALCULATION METHOD FOR THE STREET FLOW WATER DEPTH AT
THEGUTTER......................................................:..........................................................4.20
f 4.9
APPENDIX 9: TRACT 6557 CATCH BASIN DESIGN......................................................4.21
4.9.1 Curb Opening Inlet Dimensioning.....................................................................4.21
4.9.2 Inlet Nomographs of City of Bakersfield...........................................................4:22
i 4.10 TRACT 6557 STORM SEWER MODEL ...........................................
.-- .............................. 4.23
4.10.1 Storm Sewer Summary Report .........................................................................4.23
4.10.2 Storm Sewer Inventory Report .........................................................................4.24
j'
4.10.3 Hydraulic Grade Line (HGL) Computation Procedure.......................................4.25
STANTEC v:\projeds\270054.00\drain\drainage report_U6557.doc 1 .1
Stantec
D
R f 4,r ri5 Y
I" 6�557
Chapter 1
Jul. 17, 06
4.10.4 Hydraulic Grade Line Computations ................................................................. 4.26
4.11 APPENDIX 11: TRACT 6557 STORM SEWER HYDRAULIC GRADE LINE PROFILES4.27
4.12 APPENDIX 12: TRACT 6557 PROPOSED DRAINAGE MAP ........................................4.28
STANTEC v:\projects\270054.00kdrain\drainage report_tr6557.doc 1.2
z
Stantec
CITY OF (IAKE.RSFIELD
Chapter 1
Jul. 17, 06
1.1.1 Purpose
The purpose of this study is to develop a drainage plan that provides adequate drainage
facilities for the single family residential development of Tract 6557 — Phases I & II. This
comprehensive study, for each of the two tract phases, develops an efficient system to collect
the runoff from the residential development and conveys that runoff to the proposed retention
basin as surface flow in street gutters and, when necessary, as subsurface flow in the storm
drain pipes.
1.2 WATERSHED DESCRIPTIOJ
1.2.1 Location
The property is located in the north half of the southeast quarter of Section 27, Township 30
South, Range 27 East, Mount Diablo Meridian in the City of Bakersfield, County of Kern, State
of California. The property is bounded by Stine Road on the east, future Berkshire Road on the
north, future Mountain Ridge Drive on the west and Tract 6387 on the south.
1.2.2 Land Use
{ The project is a phased development with two phases and has a single family residential land
use designation. Currently, the 79 -acre subject property is utilized for agricultural purposes and
is occupied by alfalfa crops. This project consists of 135 single family units in the first phase
and 173 single family units in the second phase for a total of 308 units with an average lot size
of approximately 7,206 square feet.
1.2.3 Soil Description
According to the United States Department of Agriculture Soil Conservation Service Kern
County Soil Survey, the dominant soil types are Cajon sandy loam, Kimberlina fine sandy loam, f
and saline -alkali Kimberlina fine sandy loam. These types of soils have well draining
characteristics. The hydrologic soil group is A for the Cajon sandy loam and B for Kimberlina
fine sandy loam as shown on the attached Soil Survey Map and table presented in
Appendix 1.
<3�
STANTEC v:\projects\270054,00\drain\drainage report_ r6557.doc 1.3
1, e' Y
1 9 Y �P, fi . `+
":ie
Chapter 1
Jul. 17, 06
1.2.4 Topography
The area is generally level with an existing drainage pattern from northeast to southwest. The
Farmers canal runs through the property approximately west of Stine Road within an easement
granted to the Kern Delta Water District. The canal will be relocated prior to the development of
the subject land.
1.2.5 Drainage Sub areas
The watershed is broken into thirty four sub -areas based on the design grades. The surface
area and the length of the longest watercourse of each sub -area are shown on the attached
Proposed Drainage Map in the Appendix 12. The drainage areas do not include the Farmer's
Canal because the canal collects the runoff within its easement.
�WIM M IDI C61
The drainage study is prepared in accordance with the City of Bakersfield Subdivision and
Engineering Design Manual. A hydrological analysis of the proposed development is performed
using the rational method to determine the 5—year 24-hour and 10 -year 24-hour storm peak
discharges.
The 5 -year 24-hour storm flow quantities are used to check the flow depth at the gutter and to
determine the catch -basin locations. The catch -basins are placed at locations where the flow
depth exceeds the curb height as indicated by the design manual.
The 10 -year 24-hour storm flow quantities are used for the capacity calculations of the proposed
closed conduits. The curb -opening dimensions, and the storm drain pipe size and slopes are
determined per section 2.4.4 of the City of Bakersfield Subdivision and Engineering Design
Manual.
The 100 -year 24-hour rainfall volume is used to calculate the minimum required capacity of the
retention basin.
The attached Proposed Drainage Map in Appendix 12 depicts the storm drain system layout.
The supporting hydrologic and hydraulic calculations are presented. in the second and third
chapters of this study.
The study shows that adequate drainage will be provided for Tract 6557 with the proposed
storm drain system and the retention basin. The storm drain system and the retention basin will
be fully constructed during the construction of the first phase of the development as the
drainage of the primary phase utilizes these facilities.
STANTEC v:\projects\270054.00\drain\drainage report r6557.doc 1.4
w
Stantec
IN
I Y"Y
OF
s; RS'-
LAD
Chapter 2
Jul. 17, 06
The hydrologic design is predicated upon full urban development of the tributary watershed
which is less than one square mile and therefore designated as a local waterway.
The drainage areas and the slopes from divide point to the point of concentration are
determined per the proposed grading plan. The initial time of concentration for the initial areas
are determined using 15 minute roof to gutter time and the average velocity through the initial
area. The travel time in the downstream areas is calculated using the average flow velocity of
the flow accumulated at the upstream plus the additional flow generated in the downstream
area. When reaches from two or more watersheds meet, the longest time of concentration
governs.
The rainfall intensities are determined using the Intensity -Duration curve (Sheet D-1) of City of
Bakersfield Subdivision and Engineering Design Manual. This chart is attached in Appendix 2.
The runoff coefficient (C) is determined from the City standard D-2 based on the characteristics
of the watershed, development type, development density and the soil type. The runoff
coefficient is interpolated using the average lot size on sandy soil for each tributary area. The
Rational Method Urban Runoff Coefficients table is also presented in Appendix 2.
The design runoff peak discharge is calculated using the formula;
Q=CIA
Where: C is the runoff coefficient
"I" is the intensity in inches per hour
"A" is the drainage area in acres
"Q" is the design runoff in cubic feet per second.
The above explained steps are repeated for each reach of the watershed and. the- results are
tabulated for 5 -year 24-hour and 10 -year 24-hour rainfall events. These tables are presented in
Section 2. 1.1 (Table 2.1.1-A and Table 2.1.1-B).
STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc 2.5
Stantec
t
Chapter 2
Jul. 17, 06
2.1 HYDROLOGY CALCULATIONS
The hydrologic design is predicated upon full urban development of the tributary watershed
which is less than one square mile and therefore designated as a local waterway.
The drainage areas and the slopes from divide point to the point of concentration are
determined per the proposed grading plan. The initial time of concentration for the initial areas
are determined using 15 minute roof to gutter time and the average velocity through the initial
area. The travel time in the downstream areas is calculated using the average flow velocity of
the flow accumulated at the upstream plus the additional flow generated in the downstream
area. When reaches from two or more watersheds meet, the longest time of concentration
governs.
The rainfall intensities are determined using the Intensity -Duration curve (Sheet D-1) of City of
Bakersfield Subdivision and Engineering Design Manual. This chart is attached in Appendix 2.
The runoff coefficient (C) is determined from the City standard D-2 based on the characteristics
of the watershed, development type, development density and the soil type. The runoff
coefficient is interpolated using the average lot size on sandy soil for each tributary area. The
Rational Method Urban Runoff Coefficients table is also presented in Appendix 2.
The design runoff peak discharge is calculated using the formula;
Q=CIA
Where: C is the runoff coefficient
"I" is the intensity in inches per hour
"A" is the drainage area in acres
"Q" is the design runoff in cubic feet per second.
The above explained steps are repeated for each reach of the watershed and the' results are
tabulated for 5 -year 24-hour and 10 -year 24-hour rainfall events. These tables are presented in
Section 2. 1.1 (Table 2.1.1-A and Table 2.1.1-B).
STANTEC v:\projects\270054.00\drain\drainage report_46557.doc 2.5
Column 1: Input of the watershed sub -area numbers
Column 2: Input of the watershed areas (acres)
Column 3: Input of the watercoarse length and elevation difference along the watercoarse (ft)
Column 4: Output of the slope of the watercoarse (ft) - Elev. Diff./ Length
Column 5: Input of the upstream watershed sub -area number (R defines the Road section)
Column 6: Input of the downstream watershed sub -area number or downstream catch basin number
Column 7: Discharge of the upstream watershed sub -area
Column 8: Output of the street flow depth at the gutter (ft) - Computed by Manning's Equation in an iterative process
per the flowrate and street slope data which define the spread, depth of flow, area of flow and the flow velocity at the gutter
TABLE 2.1.1-A
Column 9: Output of the street flow area (ft)
Column 10: Output of the street average flow velocity (fps)
Column 11: Runoff coefficient defined per the City of Bakersfield Standard D-2
Column 12: Output of the Total Time of Concentration (min.) -
includes the 15 minute roof to gutter time and street flow travel time
Column 13: Rainfall Intensity (in/hr) defined for the specific storm event per the City
of Bakersfield Standard D-1
Column 14: Discharge (cfs) at the concentration point downstream of the watershed
defined by the Rational Method Q = C.I.A.
Column 1: Input of the watershed sub -area numbers
Column 2: Input of the watershed areas (acres)
Column 3: Input of the watercoarse length and elevation difference along the watercoarse (ft)
Column 4: Output of the slope of the watercoarse (ft) - Elev. Diff./ Length
Column 5: Input of the upstream watershed sub -area number (R defines the Road section)
Column 6: Input of the downstream watershed sub -area number or downstream catch basin number
Column 7: Discharge of the upstream watershed sub -area
Column 8: Output of the street flow depth at the gutter (ft) - Computed by Manning's Equation in an iterative process
per the flowrate and street slope data which define the spread, depth of flow, area of flow and the flow velocity at the gutter
TABLE 2.1.1-B
Column 9: Output of the street flow area (ft)
Column 10: Output of the street average flow velocity (fps)
Column 11: Runoff coefficient defined per the City of Bakersfield Standard D-2
Column 12: Output of the Total Time of Concentration (min.) -
includes the 15 minute roof to gutter time and street flow travel time
Column 13: Rainfall Intensity (in/hr) defined for the specific storm event per the City
of Bakersfield Standard D-1
Column 14: Discharge (cfs) at the concentration point downstream of the watershed
defined by the Rational Method Q = C.I.A.
{7 Pi
CITY f3AKFRSF1E7,LD
Chapter 2
Jul. 17, 06
2.1.1 FIVE AND TEN YEAR FREQUENCY PEAK FLOW ANALYSIS TABLES
The different frequency rainfall event hydrology tables present a summary of the hydrology
calculations performed using the method explained in section 2.1. These calculations were
repeated for different return interval rainfall events to predict the proposed drainage pattern for
various storms. The five-year twenty four-hour peak flow analysis is presented in table 2.1.1-A
and the ten-year twenty four-hour peak flow analysis is presented in table 2.1.1-B. The tables
refer to the watershed areas depicted in the Proposed Drainage Map which is attached in the
Appendix 12 of this drainage study.
The upstream -areas (column 5) and the downstream area (column 6) for each sub -area (column
1) are listed in the tables to .represent the drainage pattern of the area. The sub -area is
recognized as an initial area if there isn't any upstream flow source.
For each sub -area the street flow water depth (column 8) is computed. This depth is calculated
at the gutter and for the 5 -year 24-hour rainfall runoff it is required to be below curb level
according to the City of Bakersfield design standards. The street flow depth at the proposed
development is predicted to be below the curb level for the 5 -year 24-hour storm event. See
Appendix 8 for the calculation method of the street flow depth and the iteration procedure to
calculate the peak runoff.
The flow area (column 9) represents the cross-sectional area of the flow on the street and
gutter, and calculated using the flow depth at the gutter. The average flow velocity (column 10)
is calculated using the area weighed average of the gutter flow and the flow on the paved
surface.
The time of concentration (column 12) is computed using the roof to gutter time plus the travel
time of the flow on the street reach. The following sub -area downstream of the same reach
does not have the roof to gutter time. The travel time of the downstream area is added to the
total time of the upstream area of the same reach in order to calculate the total time at the end
of the downstream sub -area.
The runoff coefficient "C" (column 12) is determined using the City Standard (Sheet D-2) for the
average lot size in the sub -division.
The rainfall intensity (column 13) is determined using the Intensity -Duration curve (Sheet D-1) of
City of Bakersfield Subdivision and Engineering Design Manual.
The downstream discharge (column 14) is the calculated peak flow discharge at the
downstream end of the sub -area.
STANTEC v:\projects\270054.00\drain\drainage reporUr6557.doc 2.6
Chapter 2
Aug. 30, 06
The proposed catch basins are abbreviated as CB# in the tables and are accepted -to be a
surface flow reach end point. Therefore, the catch basins are assumed to have enough
capacity to capture all of the flow from the upstream. The catch basin calculations are
presented in .the Hydraulics section of this report and they are designed to have enough
capacity to capture the 10 -year 24-hour storm.
2.1.2 RETENTION BASIN CAPACITY CALCULATIONS
The retention basin capacity is based on the formula given in Section 2.8.2.1 of City of
Bakersfield (COB) Subdivision and Engineering Design Manual.
V = 0.15xj (CxA) (24 -hr, 100 -yr storm)
Where:
V is the design volume in acre-feet
C is the runoff coefficient
A is the drainage area
E denotes the summation of all C x A for,the areas draining into the basin
The average lot* size is 7206 square -feet. Therefore, the interpolated runoff coefficient is 0.388
per the City of Bakersfield Standards Figure D-2. The calculated retention basin volume is 4.26
acre-feet. The provided retention basin has a volume of 4.47 acre-feet with 2:1 side slopes. The
high water depth is 13.55 feet. 1.70 feet of freeboard is provided which brings the total basin
depth to 15.25 feet. See Appendix 3 for detail calculation, and Appendix 4 for detail drawings of
the retention. basin. Sump is constructed per COB standards D-11, D-12, and D-13 which are
stated on the details drawing of the retention basin and attached in the Appendix 5 of the
drainage study. The drainage to south, to Tract 6387 is computed in Appendix 6, and the
capacity of the basin of Tract 6387 is checked to have adequate volume to retain the runoff from
Tract 6557. The volume of water to be retained from Tract 6557 is 0.10 acre-feet. The retention
basin of Tract 6387 is proved to be oversized to retain the above given volume from Tract 6557
(Please see the approved Drainage Study of Tract 6387 by the City of Bakersfield).
In addition, the soil at the bottom of the retention basin is required to allow the basin to drain in
seven (7) days. The basin percolation test report prepared by the Krazan & Associates
recommends that the basin to be over -excavated to a depth of 21 feet below existing grade to
expose the more permeable sand soil layer. The over -excavated basin will then be backfilled
with the free draining sand. The side slopes are stable as described in the report. The
percolation test report is attached to this study in Appendix 7.
STANTEC v:tprojectst270054.00\draintrevisions-07 18_2006\drainage report_K557.doc 2.7
z r <.
CIP'Y OF
Chapter 3
Jul. 17, 06
011100MMOME
3.1.1 CATCH BASIN DESIGN
The catch basins are designed per the methods outlined in the Federal Highway Administration
Urban Drainage Design Manual Section 4.4.4.2 "Interception Capacity of Curb Opening Inlets
on Grade" and Section 4.4.5.2 "Interception Capacity of Curb -Opening Inlets in Sag Locations".
3.1.1.1 Curb Openings on Grade
The length of a curb -opening inlet, on grade, required for total interception of gutter flow on a
pavement section with a uniform cross slope is expressed by the equation;
042 03( )
1 0.6
LT = KuQ SL `n X Se
Where:
om
LT = Curb opening length required to intercept 100 percent of the gutter flow, (ft).
Si = Longitudinal slope
Se = Equivalent cross slope which can be computed using the equation:
Se = Sx + SWEo
Where:
SW= cross slope of the gutter measured from the cross slope of the pavement
S,, = a a = local depression (ft) W = Gutter width (ft)
E0 = Ratio of flow in the depressed section to total gutter flow determined by the
gutter configuration upstream of the gutter.
STANTEC v:\projects\270054.00\drain\drainage reporUr6557.doc 3.8
Stantec
Chapter 3
Jul. 17, 06
r
trt 1*z'Y �,s\f i� Via,` r� .. .r..[,r`
Eo = �" _ (Flow in the gutter section) / (Total flow on the street)
The study does not contain any catch basins on grade.
3.1.1.2 Curb Openings in Sag Locations
The capacity of a curb opening inlet at sag depends on water depth at the curb, the curb
opening length, and the height of the curb opening. The inlet operates as a weir to depths equal
to the curb opening height and as an orifice at depths greater than 1.4 times the opening height.
All of the curb openings in this study are designed for the weir condition to keep the flow depth
at gutter below the curb level.
The equation for the interception capacity of a depressed curb -opening inlet operating as a weir
is:
Q; = Cx, (L + 1.8W)dls
Where:
Cw 2.3
L = Length of the curb opening (ft)
W = Lateral width of depression (ft)
d = depth at curb measured from the normal cross slope (ft)
All of the catch basins are at sag location. A summary table for the design of the catch basins is
presented in Appendix 9.
The pipe system design computations are per the City standard requirements for the closed
conduit systems in local waterways. Therefore;
The closed conduit system may be designed to full conduit capacity and pressure flow. The
hydraulic entrance condition in a closed conduit local waterway is such that the 10 year
discharge has the specified freeboard in .the upstream channel. All the proposed manholes in
Tract 6557 are non -pressure type therefore the hydraulic grade line is more than 0.5 -foot below
the gutter. The same hydraulic grade line requirement is considered for the design of inlets.
The assumed energy losses due to entrance and exit conditions, bends, and transitions are as
adapted in FHWA HEC 22.
STANTEC v:\projects\270054.00\drain\drainage repori_tr6557.doc 3.9
tarttec
f.lR.....; �IA aii
Chapter 3
Jul. 17, 06
For bends less than 90 degrees, the following equation was used to compute junction loss
coefficients.
K= 1—
90 — Deflect90 ) ionAngle a
If the junction is an inlet, K is multiplied by 1.5. In no case K is less than 0.15 for Manholes or
0.50 for inlets.
For bends greater than or equal to 90:
Inlets K = 1.5
Manholes K = 1.0
For lines at ends of a branch, K = 1.00
The minimum pipe size diameter used is 18 inches per the City Standards. The storm drain
system is placed with a straight alignment within the traveled way, 5 feet away from the street
centerline. Manholes are provided at junctions and at intervals not to exceed 600 feet and at all
bends higher than 15 degrees. The hydraulic grade line for the conduits draining into the
proposed retention basin is designed to the half design depth elevation of the basin per section
2.4.4.8 of City of Bakersfield Design Standards. The design computation is performed using
Hydraflow Storm Sewers version 2005 by Intellisolve.
The plan view of the model, the inventory report, the summary table, the inlet report, the
hydraulic grade line computations as well as the HGL computation procedure for each
calculation is presented in the Appendix 10 of this drainage study. In addition profiles of each
storm drain system segment showing the pipe dimension and slope, the proposed groundand
the computed hydraulic grade line is presented in Appendix 11 of this drainage study.
Durability of a pipe material is as significant as its ability to perform intended structural and
hydraulic functions. The City of Bakersfield requires the closed conduits to have a minimum
useful life of 50 years.
1 The proposed storm drain system is reinforced concrete. The factors influencing the concrete
durability are the concrete compressive strength, density, absorption, cement content and type,
aggregate characteristics, total alkalinity, concrete cover over the reinforcement and admixtures.
7 A minimum of 2 feet of cover is maintained for the storm drain system per the City Standards.
{ The surrounding soil characteristics are described as mainly Silty Sand/ Sandy Silt (SM/ML) and
1,
STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc 3.10
Chapter 3
Jul. 17, 06
sand (SP) according to the Geotechnical Report prepared by The Krazan & Associates dated
February 28, 2006. The Soil samples obtained from the site for the aforementioned
Geotechnical Report indicate that the sulfate concentrations detected from the samples were
less than 0.02 percent and are below the maximum allowable values established by HUD / FHA
and UBC.
The test boring locations were checked by the Geotechnical Engineer for the presence of
groundwater during and immediately following the drilling operations. Free groundwater was
not encountered; therefore no adverse effects are expected due to the exposure of the storm
drain pipe to the groundwater.
The design life of the closed conduit also depends on the chemical characteristics of the flow
content and the flow velocity in the system. The maximum flow velocity in the system is
calculated as 4.51 feet per second for the 10 -year 24-hour storm event. The flow content of the
pipe system is expected to be non -acidic and without any significant Chloride content
considering the general characteristics of normal rainfall runoff. Therefore the closed conduit
system is expected to have the required design life.
j
i STANTEC v:\projects\270054.00\drain\drainage report_trS557.doc
3.11
R61>�i>t RtA � 3F y,. D[g.
APPENDIX
Jul. 17, 06
4.1 Appendix 1: Soil Survey of Kern County, California
4.2 Appendix 2: City of Bakersfield Urban Runoff Coefficients and Intensity vs. Duration Curve
(Standards D-1 & D-2)
4.3 Appendix 3: Tract 6557 Retention Volume Calculations
4.4 Appendix 4: Tract 6557 Retention Basin Detail Drawings
4.5 Appendix 5: City of Bakersfield Standard Drainage Basin, Standard Chain Link Fence and
Standard Chain Link Gates (Standards D-11, D-12 & D-13)
4.6 Appendix 6: Drainage to Tract 6387
4.7 Appendix 7: Tract 6557 Retention Basin Soil Absorption Evaluation
4.8 Appendix 8: Calculation Method for the Street Flow Water Depth at the Gutter
4.9 Appendix 9: Tract 6557 Catch Basin Design
4.9.1: Curb Opening Inlet Dimensioning
4.9.2: Inlet Nomographs of City of Bakersfield
4.10 Appendix 10: Tract 6557 Storm Sewer Model
4.10:1: Storm Sewer Summary Report
4.10.2: Storm Sewer Inventory Report
4.10.3: Hydraulic Grade Line (HGL) Computation Procedure
4.10.4: Hydraulic Grade Line Computations
4.11 Appendix 11: Tract 6557 .Storm Sewer Hydraulic Grade Line Profiles
4.12 Appendix 12: Tract 6557 Proposed Drainage Map
STANTEC v:\projects\27GO54.Oo\drain\drainage report_tr6557.doc 4.12
Stantec
D IF A1 t'i3 f- Pik £^A.: DY
'T 7
C -l' TRAC',
s
APPENDIX
Jul. 17, 06
fAj
STANTEC v:\projects\270054.00\drain\drainage reporLtr6557.doc 4.13
17/3(
T. 36
3E
C
This soil survey map was compiled by the U.S. Department of Agriculture,
Soil Conservation Service, and cooperating agencies. Base maps are
orthophotographs prepared by the U.S. Department of the Interior, Geological
Survey, from 1976. 1977, and 1978 aerial photography. Coordinate grid ticks and
land division corners, if shown, are approximately positioned.
1 3/4 lit 1/4 0 1 2 MILES
—
1 05 0 1 2 KILOMETERS
SCALE 1:24000
KERN COUNTY. CALIFORNIA, NORTHWESTERN PART NO. 38
�
.. -•; \�LANE
_ .... ,-.. AYdt�RA r,= � .. .. ..
.. . , .�*'_
:. ' "` x"
�'
,a
•:rai
-
't
i. t.. 3.. ^.- Y- ` ,�•'� �t � � 5�-�`��`
_vin i<
y ��r _ \ 1 �s.t� El.�-.
i.. '.iyi �
.i et1.
S
T'v r-
_
S'F
2
-
^ �
' sem- Zs. - ,"'lvY•'-
..hu - - -
}
- 3+ ` ST•t��=
•- ��4i < 17# s
,- Esc, .'�
0► "''�..
�ec:� . 5. - .:r.•,
_
_
:., • .mss.. ... {.__ .. -t -
- �-{-,_ 4-. e -'� ^� •� _ :a , _ �--.:-:,_w,;r <,•-• .-: r_ r-. c
_ �., - ':
=_< .. .�.. art.. .,_a
`•a _ � II
- t=• .,, . :L- �-v_.+�-` - -
-
- _----�� `»
�1 "'`s,�
- "ter- :i--- - :.:r..
a - '� •�`.-.
7`- -
-� Y •�=127, -
x€cs , _
b -
�_
,'•-,mac',`,
a <�.x
-
_C`
�� may,,
127 -
�� `ta"sii" CQ`c _.st.- i
-
.••,3- .'arm
�-
tY
1'r•.. : C:;-- Y'.� �:i4i-.-�. _ - rs C.,'
r--�N, y �''� �i.
� 5`�`,%'.'-. '_.���
-
�c
.._r�-"=ti`� a�x;�r
., > ,...� :4�t: - �u�'f.1�-.
- ` �� -
_ .-3<•-
'�-.: lc •i%
_ _
-dl' ,i`ra�.
a- F ..._
- . F=-� ;mss
h ,:s�t<. :.`a Vii•
S c=' ^='w"'.
p
,;'.y. ��.z�� •'. '� +�
*V-2
-
s
7
.-4
::�.:
_��,��•: .;;n
Y... ,.;t�� zr-._� ... _L'x� _y -, , .�"> ....
T,. z
,,'� i ♦ .i _ �__.
S3 4 r.� tee..
••_,>< .-.. 'F .',>-F-ti• `.Yi-
1175
,t�7-.
-t-
-
L�
.,,r. �-.
,
E'x
-
o-
-•a,r_:_-+• •>_•. _ _ ._ t- ,.: r::=e:>=•
is <: _ ;_,
s s` s.
1
-au
-
v,...,:- ♦ `� �
r
pq.��
£ �
sir s
'
7. �•` _� a� r s �-� a.
x= 'g..
1.'
�-,hem a: .Hi :a'�r
- -
,
-..:
,
��
,.._ .. ,t. '. .. ;.... .. _a'i=--E'r' >4.._:-
5.' 'rte �`#� sty`- fig:. `€-,'y.�-Fa
_ � -. �.� is,_ .-;y a'F �t_, -
-..
-.',., ✓-'- Imo, _ tf.�4
) 7',>t moi?' :.: -
) _ -
�q
_k - ,�. �
`-�-yk� -• f
`"`� 'i0:-
.. J,-.
'� T J.Y 4�:
_ i.,:c.� >4 � i
L.
_ � •,�.
:sr�•` 35z'.-
- _
"
- f:E' .,-,atif .�- � _.. }.� ,-•tr`�a�f==-• `S.,`;.�i. F _ _ ._>.
-
�" ` - - ..
�<Ft - �-a:
.,`�^
-
a•J�
�t,
s
S.
0. Z
1
j
'z},
;ti
-
-f.
3sr —
' _: - {fya "_ _ .t.' :-�. »: `�^ y .. c- �
_ .� 174....- '�� .,__ ,— _,._. _,_t..
- �,.x3.h� ,� - -. 3�'.f.-. ;Y �
- �, . tr:. - '..
_-._ ,. ,•
-.a,..
h
.. �... .. .>r xS+
n -ase ..<.. �i3y, `t.
w3 -r� 'J,
ss-�-.f•.
__ �- - zc '-'
- -
- ..a-�-
�K'r:
^:t EF;R-:$rT*� .�'
.•= � ,�_
i
i2• - ', _- `,- ..1+43.. ._-: F. -f �.- -_z �..
____ -`?4.-
�&'. S t 1
-
-
<
- 7
,
-
xf: '_ate`= 6..,�'- *,
127
t•T� �4v y
� - f4�.
' '�-�"iy - _ _ �i
�,
_ - °_t =
F- ��_=..i 1 174
ti 174
-
=`✓-
y'�a�r•�a.
_
>.t .y -;' '"'3-'s 'a,�,�`* ^•
F.�, i_:
_
'f<<
-
'"
_ _ '1,�
.a: _
.;.
174
- .moi k'`.-`
- _ _tis-' ;r ,3 -- -
= :
_ 127
. � _i27.
17 .-g.
4 127 `i
174
?moi
;2
4 }
_ • {
, _
; x
mom, -,;4.
x
-
\
5,
r
,,n s• `iia •
`
DOZEN�40
1•..' _ e-, _s _ Ate'.-
'�i rt
,.r
:Lr ^� .3 -
�-
::.: .... {.t -..mom, .. ,-_ r. _ _.i
:.. .: . ,.. -�. - - .p•t'r -ai. .. si •- - _-_
{
� .�._: - t
- .- '?' _.-...�
moi• '!- -
___-�<� ;f:'•
E? .� . .`_,� _. `e: x�
- - f
-"Y".
174
1. - an a
ti . S
; 127 �•` > -
-
-�- -
>-�.n
,� _ -
arc.•
,��'-1� • S
-
-
This soil survey map was compiled by the U.S. Department of Agriculture,
Soil Conservation Service, and cooperating agencies. Base maps are
orthophotographs prepared by the U.S. Department of the Interior, Geological
Survey, from 1976. 1977, and 1978 aerial photography. Coordinate grid ticks and
land division corners, if shown, are approximately positioned.
1 3/4 lit 1/4 0 1 2 MILES
—
1 05 0 1 2 KILOMETERS
SCALE 1:24000
KERN COUNTY. CALIFORNIA, NORTHWESTERN PART NO. 38
t
297
<ern County, California, Northwestern Part
TABLE 15.—'10
;
nt
on
Risk o corms777
I
I
Soil name and 1Hydro-
logic
1 Frequenop�
of.
-77
,Depth th{Hardness Depth Thick-
> �;
;;V ntsa DPnI_
(Uncoated (Concrete
I
map symbol
{
{
x
ness
steel
u
floodin
I
n
I
{
C
{
Rare
3. 'Perched Jan
-Decd
>60 i
--- i
--- ---
IHigh ----- ILOw.
124----^----------I
{
{
I(i
J
Buttornrillow (
I
I
(
IRAM------
{
II
>60
_--
Moderate
Low.I>6.0
125---------------{A
i
I
Cajon
I
{ I
I I
{
(Moderate I
126 ---I A
INone------I
>6.0 1
>60 I
--®
(Low.
Cajon
Cajon
1Mode rate iTow
..
-- - ---
Moderate.
128---------------
I D
INone------{
>6.0 --- I
{
®®®
>60
---
I
IHigh-
{
.
Capay I
I 1
I I
I {
I
1 I
129*: I
1
>6.0 I --- I
- --
20-40
Soft
I
--- I --®
IHigh-----IHigh.
Carollo---------- I D
INone------I
--- I
I -_-
High -----{Moderate.
Twisselman------- ID
None ------
I
.
1 1 I
>60
I
{
I {
130, 131, 132--®--1 B
INone------
1 >6.0 --- I
I
-®- I
i
>60
--- I
I {
--- ---
{
IHigh-----Low.
(
Chanac
{
INone------)
I --- {
--- 1
>60
Isoft I
--- I ---
1
I ILow.
IHigh-----
133---------------I D
I
>6.0
I I I
I
i
Choice
I
{ { (
I
I
I
I
134, 135 ---------- I B
INone-----_1
___ I
>6.0 1 I
-__
I >60
I --- I
I
--- I ---
High----- Low.
{
J
Cuyama
I
I
I I
I
r
136*: I
-----I B
I
INone------
I
_
>6.0 I - _
I
I __
I
I >6o
I
I ®®
I {
IHigh ----- (Low.
{
LJ
Urban land.
{
I
II
IHigh----- ILOW
Delano -----------I B
INone------
1 >6.0 I ---
I ___
i
I
I >60
I---
I
I ___ I
.
igh®----II Low.
High --
137-----------__-- D
INone_____
>6.0
>60
---
8-20Thick
1I
11I
II
I
I
I
Cymric
1I
138, 139---------- I B
iRare------ >6.0
>60
II
--- ___
IHigh-.----ILow.
II
l
Delano
----- ILow.>60
140 --------------- IB
INone ------ >6.0
--
---
---
I I
High
I {
Delano I
I I I I
>6.0 ---
{
I ---
I I
( >60 I --_
I --- I ---
{ High-----ILow.
II
1Delano ®--------I B
I
Rare------{
I I
I
I {
{
I
{
I {
I
142 *: I
----- B
Delano------ I
I
(Rare_
{
___
-----I >6.0 I>60
I I
1 ---I---
1
I I
I--- I---
I I
I High----- I Low.
I {
Urban land.
IIH i
�.
143 ---------------I C
INone___--->6.0
---
>60
igh-^--- Low.
�-�
I
{ {
Delano Variant
I I I
INone------
I _17-20IHard
{ ___ i
Low.
I1 High ----- ({
---D
>6.0
I
1144
I
Delgado
I C
(Rare ------ I >6.0 I ---
1 ---
I >66 I ---
120-40IThin
IHigh-----(Low.
-r'..
145
Driver
_:
See footnote at'.end of table.
`hcf
i Kem County, California, Northwestern Part
#�
4 r�
288
TABLE
15.
_
s o corms on
Soil name and iHydro-i Frequencyi
map symbol i logic{ ofgro.Depth
41
T .b�{Uncoated
!ts
(Concrete
{
u
flood in
_ '.;
_
'�s€ ,. mess
steel
20-40{Soft i i
(High -----'Low.
168, 169- -i C
=None--- --�
Kettleman
{
{None---"-
{ { ---
{High----- Low.
170--------------") B
{
>6>.0 �--
f
20-40{Soft ---
Kettleman
171*:
4
High- ----�
Kettleman-------- i B
iNone------i
>6.0 { --- _
--- 20-40Softi --- i ---
(Low.
{
Delgado ---------- D
{
{None------)
( {
>6.0 { -- {
{ (
--- { 7-20 Hard { --- { ---
{ { {
High -----{Low.
{ (
Rock outcrop.
{
172*, 173*:�
----------- C
{
;None ------i
>6.0
iHard -__
20-40i-
{iHig-----1Low .
Kilmer
{
Hillbrick - D
{ (
None -
>6 0 1 ___ {
--- {10-20{Hard __- { ---
(High----- {Low.
175, 176
B
------ i
>6.0
i ---
---
>60 i
--- --- -^-
iHigh ----- iLOW.
178 -----177-----i
iNone
{
79 { B
{Rare-= -{
>6:0
>601High
®High "
180*:
Kimberlin ------- i B
iRare------i
>6.0 i ___ i
®_® i >60 i ®__ i ®_® i ---
iSigh-----iLow.
Urban land. {
{ {
{ (
{ { { (
{ {
J
Cajon ------------- I A
lRare ------ i
>6.0 � -®_ � ®_® � >60 � ®®_ i ®__ I ®®_
---
{Moderate iLow.
iHigh----- iLow.
181 --------------- C
{
_____
R,�_
{ (
3.0-6.0 Perched
{
Jan-Deci >60 i --- i
{ i r--
j'
Lerdo
182*: {
{ {
{
{ { ( { {
i >60 i--- i ®__ i ___
{ {
High ----- iLow
:.
i
Lerdo, i C
iRare------i
>6.0 i---
i---
.
saline -alkali {
{ {
{
( { { { {
{ {
( C
Lerdo------------{
{Rare------{
{ {
>6.0 { --
{
{ --- { >60 { --- { --- { ---
{ { I
{High -----{Low.
{ {
183---------------{ D
iRare------i
>6.0 i ---
i --- i >60 i --- i --- i ---
iHigh----- lRigh.
Lethent {
{ {
{
{ { { {
i{High-
184---------------i C
iNone------i
>640 i __-
{ --_ ; >60 i --_
{ ----{{Low.
Lewkalb
185*<
Lewkalb-----___®_i C
iNone------i
>6.0 i ®__
--- i >60 i --- i --- { --
---_{
(High- {Low.
--- _ --- ---
iHigh ----- iLow.
M11ham----------- i B
iNone------
>6.0 i --®
i _®® i >60 i
{
(None ------>6.0
---
ii---
ii>60
iiHigh-----Low.
i
1
Kimberlina-------B
186------i------D
ii
!None ------
i
>6.0 ---
--- 6-20 Hard --- i
High ----- iLow.
Lodo Variant
{
187---------------i C
'Rare ------i
>6.0 i ®__
i --- >60 i --- i --- i ---
'High -----{Low.
Lokern
1
i
See footnote at end
of table.
M
M.
Y
Stantec
APPENDIX
Jul. 17, 06
4.2 APPENDIX 2: CITY OF BAKERSFIELD URBAN RUNOFF COEFFICIENTS
AND INTENSITY VS. DURATION CURVE (STANDARDS D-1 & D-2)
CITY OF BAKERSFIELD
RATIONAL ME -MOD
URBAN RUNOFF COEFFICIENTS (C)
TYPE OF DEVELOPMENT (Includes Street Area)
(c)
Sandy.. soil
HeavySoil
R-1, 6,000 S.F.
0.42
0.38.
0.44
0.39
R-1; 7,500 S.F.
0.34'
0.34
R-1, 10,000 S.F.
0.27
0.27
R-1 15,000 S.F.
0.55
0.58
R-2
0.80
0.80
R-3; R-4; M -H
0.90
0.90
cmVercial
0:80
0.80
industrial.
0.15
0.22
Park's Undeveloped
Grasslands, Type A Soil
0.15
Grasslands, Type B Soil
0.25
Grasslands, Type C Soil
0.35
0.45
Grasslands, Type D Soil
SURFACE TYPE (For Composites)
Pavement, drives and roofs
0.95
Backyards
0.05
Sandy Heavy
Lawns & Landscaped Areas Soil Soil
Flat Slope, 2% 0.10 0.17
Average Slope, 2% to 7% 0.15 0.22
Steep Slope, 7% 0.20 0.35
Sandy Soils - SCS Group A & B Soils
Heavy--S6ils - SCS Group C & D Soils
Soil groups for area in question can be determined by using
Section 2.11 or by referring to the General Soil Map on file
with the County of Kern.
Dl:RAT.MET
RATIONAL t•' MOD
URBAN RUNOFF COEF
ma
Stantec
1) F1 A I N A G E S1"" �,* KU Y'
CITN' Of BAKERSFIE-LI-)
APPENDIX
Jul. 17, 06
V = 0.15 SCA PER CITY OF BAKERSFIELD ENGINEERING AND SUBDIVISION DESIGN MANUAL
1
A - WATERSHED AREA (ACRES)
2.74
C *
0.388
V - RETENTION VOLUME (ACRE-FEET)
0.16
EAREA
2
1.17
0.388
0.07
3
2.30
0.388
0.13
4
0.36
0.388
0.02
5
1.38
0.388
0.08
6
1.26
0.388
0.07
7
1.46
0.388
0.08
8
2.76
0.388
0.16
9
2.92
0.388
0.17
10
5.55
0.388
0.32.
11
3.06
0.388
0.18
12
0.20
0.388
0.01
13
3.76
0.388
0.22
14
3.31
0.388
0.19
15
1.67
0.388
0.10
16
1.31
0.388
0.08
17
1.15
0.388
0.07
18
1.06
0.388
0.06
19
2.49
0.388
0.14
20
4.34
0:388
0.25
21
2.57
0.388
0.15
22
0.76
0.388
0.04
23
5.34
0.388
0.31
24
2.80
0.388
0.16
25
4.00
0.388
0.23
26
6.50
0.388
0.38
27
1.48
0.388
0.09
28
0.11
0.388
0.01
29
1.37
0.388
0.08
30
1.27
0.388
0.07
32
2.15
0.388
0.13
33
0.53
0.388
0.03
TOTAL VOLUME =
4.26
* RUNOFF COEFFICIENT 0.388 IS THE INTERPOLATED VALUE BASED ON TRACT 6557 AVERAGE
LOT SIZE OF 7206 SQUARE -FEET PER CITY OF BAKERSFIELD STANDARD D-2.
BASIN BOTTOM AREA=
0.14
ACRES
WATER SURFACE AREA =
0.52
ACRES
INTERMEDIATE AREA =
0.33
ACRES
MAXIMUM WATER DEPTH =
13.55
FEET
FREEBOARD=
1.70
FEET
VOLUME OF THE BASIN =
4.47
ACRE-FEET
SUMMARY: PROVIDED RETENTION BASIN HAS THE REQUIRED CAPACITY (4.47 ACRE-FEET) FOR
THE PROPOSED RUNOFF VOLUME (4.26 ACRE-FEET)
i
M.
1 M A G E U! 1) Y
F 0 R T R A G'T 6557
CI'TY C)F BAKEIRS.4 NE.-ID
APPENDIX
Jul. 17, 06
STANTEC v:\projects\270054.00\drain\drainage reporL_tr6557.doc 4.16
I. •
DESIGN STANDARDS -11 -1 -1
100 YEAR VOLUME REQUIRED =4.26 ACRE—FEET TOP OF SUMP ELEVATION=351.50
PROVIDED VOLUME=4.47 ACRE—FEET HIGH WATER ELEVATION=349.80:
MAXIMUM WATER DEPTH=13.55 FEET BASIN BOTTOM AREA -0.14 ACRES
FREEBOARD= 1.70 FEET WATER SURFACE AREA=0.52 ACRES
BOTTOM OF SUMP ELEVATION=336.25' TOTAL SUMP LOT AREA=0.87 ACRES
l Q
PERIMETER WALL �`' 242' "` _ACCESS ROAD
s
20'
11 12' I cs�
I 's 211 ' 62s I
I �
TOP OF BASIN I
a
m W s�sBOTTOM OF BASIN No 2:1
~IN I 2:1 `� /HIGH WATER LEVEL 68' _ I N
Z 110
I (a I ��' 140 v q G,c 12' 13'
i I ESS
01
1
41\\ 242' ACCESS ROAD
JULY, 2006
2025005400
Stantec Consulting Inc. Notes Client/Project
Z ,, STANDARD PACIFIC HOMES
1400 18th Street TRACT 6557
a RETENTION BASIN EXHIBIT
� Bakersfield, CA -
"' 93301 1' Figure No.
N
Tel. 661.616.0000 Title
StantM Fax. 661.616.2400 RETENTION BASIN EXHIBIT
www.stantec.com SCALE: NTS
A\
t�
I. •
DESIGN STANDARDS -11 -1 -1
100 YEAR VOLUME REQUIRED =4.26 ACRE—FEET TOP OF SUMP ELEVATION=351.50
PROVIDED VOLUME=4.47 ACRE—FEET HIGH WATER ELEVATION=349.80:
MAXIMUM WATER DEPTH=13.55 FEET BASIN BOTTOM AREA -0.14 ACRES
FREEBOARD= 1.70 FEET WATER SURFACE AREA=0.52 ACRES
BOTTOM OF SUMP ELEVATION=336.25' TOTAL SUMP LOT AREA=0.87 ACRES
l Q
PERIMETER WALL �`' 242' "` _ACCESS ROAD
s
20'
11 12' I cs�
I 's 211 ' 62s I
I �
TOP OF BASIN I
a
m W s�sBOTTOM OF BASIN No 2:1
~IN I 2:1 `� /HIGH WATER LEVEL 68' _ I N
Z 110
I (a I ��' 140 v q G,c 12' 13'
i I ESS
01
1
41\\ 242' ACCESS ROAD
JULY, 2006
2025005400
Stantec Consulting Inc. Notes Client/Project
Z ,, STANDARD PACIFIC HOMES
1400 18th Street TRACT 6557
a RETENTION BASIN EXHIBIT
� Bakersfield, CA -
"' 93301 1' Figure No.
N
Tel. 661.616.0000 Title
StantM Fax. 661.616.2400 RETENTION BASIN EXHIBIT
www.stantec.com SCALE: NTS
'I VARIES VARIES
. 7 MIN. 1Y 30,5• 30.5' 1 12' I IF If MICHAIN N. MIN MIN
FENCE
CMV BLOCK WALL
t � / PCD BOTiCI , < �'` ` � •
SEC71ON a-8
VARIES N. T.S APoES
7 MIN. 12' 30.5' 30.5' 12, MN 7 MIN.
jl CHAIRLINK MIN
i FENCE am LINK
1 FENCE
�/ 2 7LW OF PPD Lt_SOZ — 2 • .
------------------------- ---
IM NKW? MW (SAM
,� r �� Z/ FCD eonw agg
---
SECTION C -C
ATS
-A
m
1 � MOUNTAM FUDICAE WE
z
.::• j I I BOTTOM ELEV. 336.25'
^p ^ 4 1p
J iv z BASIN ACCESS PATH
y —
J�i WAY
—�— — — — — —
,1
3
SUMP INFORMATION
TOP
351.50
WS
349.80
BTM
336.25
CAPACITY REQ.
4.26 AC -FT
CAPACITY PROVIDED
4.47 AC -FT
TYPICAL
N. T.S.
* PER C.O.B. DETAIL S-9
08/2006
-
2025005400
Client/Project
fs a
Stantec Consulting Inc.
STANDARD PACIFIC HOMES
N
<
=
•1400 18th Street
TRACT 6557
Bakersfield, CA
N
93301
Figure No.
1
Tel. 661.616.0000
Title
SWntK
Fax. 661.616.2400
DRAINAGE REPORT
0
www.stantee.com
SUMP DETAIL .
im
M.
0
I=.
APPENDIX
Jul. 17, 06
4.5 APPENDIX 5: CITY OF BAKERSFIELD STANDARD DRAINAGE
STANDARD CHAIN LINK FENCE AND STANDARD CHAIN LINK GATES
STANTEC v:\projects\270054.00\drain\drainage report_tB557.doo 4.17
M—
Carne, Cutoff �\
Fence cutoff at street comers
shall conform to the reautremerin
of the Citv Traffic Eno neat.
SIV
-Oesign Wolof Surface
outlet `
Mme.
:I situcxwa-
W uNLE55 orAlc'1QwtSc SECTION A ® A
ALl-O K/ 6.'n
/Web min" to
Angftf
I - 1
•Ctrs!
ElofL h. Pipe
QQ *101
®1
of
u A
PLAN
1A
J
NOTE- Location ondl number of
drive and walk gates
un fence b be detetmnad
in the heb Iry the City
Consirwct 6' high Choir - Liali C"Wower,
Fane ria/ Redwood Slots of property
lint, unless otherwise dtreeled by the
City Engineer.
0D of Pipe . 2'-0" 3/8" by 2• Flof bar
Minimum 3-0- ���I (Length -Pipe O.D.410")
Weld bar to hinges.
N;A'a
REVISEb JUL �9
d
of
JUNE 6 1043
Galvontied . fAaMne Scutstrod Load Shields.bar ®Weld 1/2• Sari to Flat Bars
ILtngfn a Pipe O.D.+10") _ at Too and Baton •-
eereevse
ELEVATION
OUTLET
Gutter JL-,
.:EVERAL ` IT-cS:
All work sham stall conform to the applicable sections of
the current specifications entitled "Standard Specification.
State of California. business and Transportation Agency.
Department of Transportation".nand the following s'e0ie+
*.W""ons. LAYCIT AKtafRAL
6-D1TIOw NogT%;
Drainage basso shall be a minimum of one buildable !at,
fronting on a street, and having a shape and :ocatian
acceptable to the City Engineer. .
Landscaped park drainage basins shall not be governed by
this standard.
Basin site shall be deeded in fee to the C.-ty of Bakers.
field.
Side sluices dull not exceed 2:1
All eaposed metal in the outlet structure shall be hot
dipped galvanized after fabrication. i
Outlet structure shall be constructed with Class "A"
(6 sack) concrete within 2 1/:" to S l/_" slump.
Concrete shall Domain no additives unless prior written
approval is obtained froa•the City Enginxr.
Concrete shall be cured with a wnate pirxnted curing
compound coaolring to Section 90--.016 of the Standard
Specifications.
,;e pipe belts shall be placed in structure.
Chain Link fence and gates shall conform to the spectfi-
cations shown an City of Bakersfield Standard Drawings
S -i0 and 5-11.
All new drainage basins including area between fence 4
sidewalk shall be sterilized with a permanent sterilanc
such as 1Nvar A. Additional treatment to the area berm t,
fence and sidewalk shall be as directed by the Engineer.
Application rate is twenty-five t251 pounds net acre. i
representative ci the Parks Division shall, be un site at
time of sterilization.
Basin ca?acity shall conform to City of Bakersfield Pablit
4-:,rks Dersrtsent Design Poliev for Drairate.
kE.L.-C.
STANDARD r
o' A I I il,
a m s ss'IF.15
CITY OF BAKERSFIELD
CALIFORNIA
:..,...-.. ENGINEERING DEPARTMENT
ti
mei a T" Awarief - 1 � OM
Pi , 2.2T ®/ hat
♦♦�♦,•�f�� f a* __ii°••• alai i e°e•.••i•Qi°epi °vee°e • •fii°° °• °°!y°ei♦•••e°�°••♦ •`•e � i>• ♦°O•� • •°•°O•i°. O•::
♦ ♦ •♦• ♦ •�♦♦� �♦_� :°ii°i°.! s•♦•e°e •°e°i ~i�!�+ i•° a •°ii•% •• • f �I ����°*♦• •°•i°i � •�•i
.�1►�L�♦ •�� •�•r �• — -•i°.!i!!�♦�i�� O °•°•s!s�s� °���Z�•i!est•°♦�1�°d•��%�w►i�%�ISi0i1C/r.��i`°w0•i♦i°i Q.'
.�•-. �.. •�.'�1.r.4•v♦�K� .��e•re1Nr� w�4. �sArsr�•els-vLs'e'°'6"�G+_r�'A97h.?-$o_y_♦Zw
NL 6ENERAI. NOTES: r MiR.
Installation of fencing and gates shall be in accordance o
the requirements of Section 88-4 of the specifications
entitled "Standard Specifications, State of California,
Department of Transportation", current edition.
R 6" x'b" concrete curb shall be constructed under all fee
Within City parks, a 6" thick x 9" wide curb shall be uses
In either case a 1 1/2• clearance between the curbing and
-7fabric shall be used.
"' .� - •:•,• •.- Concrete shall be Class "R" t5 sack) wild shall be within
1/2" to 5 1/2" slump. Surface of concrete shall be trowelE
Smooth, and brush finished. Concrete shall contain no
*additives unless prior written approval is obtained from t
City Engineer. Concrete shall be cured with a white pigrer
•'• curing plying to Section 90-7.016 of the Stand
Specifications.
PC.C, w I Corner post shall be installed at all angles in fence line
excess of 18 degrees.
i'YPICI. ®�'iA1�. i End, and bate Frosts shall be braced to the nearest
line post with galvanized diagonal or horizontal braces us
CULVERT ENDW LLa5 sion members and galvanized 3/8" steel truss rod
ek1 t t• ht used as tension membe
NOTE -
Soo is to H shalt vsid with
3 x S 9 fabric so cm0ructed that the Wats are eked ado
positiW aid =n only with U" of tools.
"at'" tWriam es or rues ag tamers
Fabric shall be fastened to bate Frost, Terminal post or
Corner Frost with 1/4" x 3/4" stretcher bar bonds at 8" on
'center.
Fabric shall be fastened to lire post with fabric bonds
spaced approximately 14" apart, and to last runner and bot
tension wires with fabric bonds spaced approximately 24"
apart.
Chain link fence fabric shall conform to the specification
ASTM designation: A 392, Class I.
Subgrade preparation shall be constructed true to gratle an
crass section with compaction of 85% tb_a depth of 0.50 f
♦ .. aaL.a
STANDARD
CHAIN LINK
�. � s
CITY OF BAKERSFIELD
CALIFORNIA
D- I?
FENCING TABLE
"EIGHT I l HEIGHT 2
HEIGHT 3
H
5' 6'
to'
DC
Z'-6" 3'- 0"
-d
DL
f -e Y-6"
3' -Cr
T Pact
2 WCLU P 2 7/a"ILQ aak Pia 3 le 0.Q Gawk l4w
w
Pte,
S" RI Fl 5.79 • / fl
7.58 a/ FL
H cele"" p c°1•m"
1 7/a• ■ 1 5/or 2 w a Iva"
2 7/9' 02 ask pipe
Liao Pact
2.70 6 /F1 4.10 i/ ft.
g i J FL
1 we' 0A a P 2 3+i 0.Q Pip
2.T2 oJFt 3.85 61 ft
8 . 2 bM • Go". •I!M
0 Sawa. aW,
Nesta
xft"k Q Ta ad
®nes
Kamttg4 T®® Mi
bit
h"6ww1
2 • " 1•
Slits
i
NOTE -
Soo is to H shalt vsid with
3 x S 9 fabric so cm0ructed that the Wats are eked ado
positiW aid =n only with U" of tools.
"at'" tWriam es or rues ag tamers
Fabric shall be fastened to bate Frost, Terminal post or
Corner Frost with 1/4" x 3/4" stretcher bar bonds at 8" on
'center.
Fabric shall be fastened to lire post with fabric bonds
spaced approximately 14" apart, and to last runner and bot
tension wires with fabric bonds spaced approximately 24"
apart.
Chain link fence fabric shall conform to the specification
ASTM designation: A 392, Class I.
Subgrade preparation shall be constructed true to gratle an
crass section with compaction of 85% tb_a depth of 0.50 f
♦ .. aaL.a
STANDARD
CHAIN LINK
�. � s
CITY OF BAKERSFIELD
CALIFORNIA
D- I?
•/ • X ```� ..� -1 sm" 0 D Gely. Pipe
i 2.72 o/ Ft,
� ' ii2onbl w I
Fabric - 9Gov
; X.
broce wish Noss red:
afNr weaving,
i
1
krwawill top end
1111
boltom.
I
l
offer'
Neighd - SB' a- 70"
/ •', . ,'/.' /
WALK GATE
Hama - I T/® 0-P.
kmAkbed I" t
Gar. Pipe
,$r(NGLE
2.72 eifoa
`
bottom
'
.; Wk M - 4 fee
b�with
>. lock
•�
�� wignt - 7 fee
,
/
�,,
17M7QQ Gov. Pipe
Horizontal or
Closs'B" P.C. cone.
272 a /foot
1. i
Gate Post - 2 7/d" QQ
• brute'
Singh "U fork leek
t•
o.
w" him" r
;
s
with lock
\ .
• ® ; Clots"B"PC. Cone.
t i -Gok posts - 3 Ve 00.
r Gak Pipe
L- 414114"
M� t
10 CFOOT
pw FENCE
c
PE®EQJTR1bh1N Vit I G rFobrit-9 GolW,2"wwsh./nhanized
after weaving, knuckled top and
ibottefrt
/ Fabric - 9 , Y
math, 90"rund
afNr weaving,
i
1
krwawill top end
•,
boltom.
I
'CGWrJ F MIX C.dTF
Width- 4 feet
>
Neighd - SB' a- 70"
.
•/
Hama - I T/® 0-P.
i
Gar. Pipe
2.72 eifoa
`
glrkAfork
;
b�with
>. lock
t
f
•K
/
Closs'B" P.C. cone.
..
1. i
Gate Post - 2 7/d" QQ
Golv. Plot
t•
o.
5.TS a / fool
s
Horizontal or'
trace with Huss met
p t
Mth
GENERAL NOTES,
Subgrode prspaotion $halt be* eonatruded true to grads and
cross section with compaction of 05% to o depth of 0.50 feel.
Concrete $hall be Class '8' (S sack) and shell M within 2 V•2® to
5 1/2" Slump,
Surface of concrete shall be troweled smooth. and brush fimstwd.
Concrete shod contain no additives unless prior written approval
is obtained from the City Engineer.
Concrete shelf be cured with a white pigmented curing compound
complying to Seelion 90- 7010 of the Standard Specifications,
End, Caner and Gott Post$ shall be braced to the nearest :int
post with galvanized diogonel at horizontal brocts used at
compression members and golvannzed Va" steel truss rods with
turnbuckles or truss tighteners used as tension member.
When redwood suburban screen is regiiired U snail be used with
3s 5-9 gouge tobnc $o Constructed that the slots are tock®®
into position and con only be removed with use of fools
Frames shalt be mode with fittings or wttdtd, with welds
ground smooth, and regolvonhzed.
f - 2 Tle
Pipe
1/fool
♦♦ Cio$s "®" FC. Cant. ��
Chain -Link fonts fabric'sholl conform to the specifications of ASTM
Designation- A 392, Class L
Installation of fencing and gotei shall be in accordance with the
requirements of Section 80-4 of the Standard Specifications. State o
California. Buslnass and Tronsoortation AWCV. Jsportmsnt of Transpwta
current edition, and these 6eneral Notes:
Curbing as specified by C.O.B. Standard Drawing S-10 shall be eonlhnu
under Boles.
R �'ay i S 17) JU L '6'S
NO
STANDARD
CHAIN LINK
GATES
CITY OF BA►KERSFIELD
r mitts CALIFORNIA .S
e+r, ENCcIM ltd IPA.KY'PAEM'
17- 1-4
iz
M.
R
E- T ',J
FOR 1"RACT 7
(TF)" ()�rz
APPENDIX
Jul. 17, 06
4.6 APPENDIX 6:. DRAINAGE TO TRACT 6387
STANTEC v:Xprojects\270054.00\drain\drainage reporUr6557.doe 4.18
DRAINAGE TO TRACT 6387
V = 0.15 ICA PER CITY OF BAKERSFIELD ENGINEERING AND SUBDIVISION DESIGN MANUAL
DRAINAGE TO SOUTH TRACT 6387:
AREA A - WATERSHED AREA (ACRES) C V - RETENTION VOLUME (ACRE-FEET)
31 0.68 0.388 0.04
34 1.00 0.388 0.06
TOTAL VOLUME = 0.10
* RUNOFF COEFFICIENT 0.388 IS THE INTERPOLATED VALUE BASED ON TRACT 6557 AVERAGE
LOT SIZE OF 7206 SQUARE -FEET PER CITY OF BAKERSFIELD STANDARD D-2.
SUMMARY:
PROVIDED RETENTION VOLUME OF TRACT 6387 IS 5.78 ACRE-FEET AND REQUIRED VOLUME IS
4.54 ACRE-FEET PER THE CITY OF BAKERSFIELD APPROVED DRAINAGE STUDY FOR TRACT 6387.
THEREFORE, THERE IS ENOUGH VOLUME TO RETAIN THE DRAINAGE FROM TRACT 6557
IN THE RETENTION BASIN OF TRACT 6387.
STANDARD PACIFIC HOMES HAS WRITTEN A LETTER ACCEPTING THE 0.10 CFS RUNOFF FROM
TRACT 6557 WOULD CAUSE NO PROBLEM FOR TRACT 6387 FROM A DRAINAGE STANDPOINT.
THE LETTER HAS BEEN SUBMITTED TO THE CITY OF BAKERSFIELD ON 08/22/2006.
F=.
M.
1
Stantec
066!960 E1.1,j D Y
CITY
APPENDIX
Jul. 17, 06
4.7 APPENDIX 7: TRACT 6557 RETENTION BASIN SOIL ABSORPTION
EVALUATION
131
I
IMPORTANT NOTE:
THE RETENTION BASIN IS GOING TO BE OVEREXCAVATED TO A DEPTH OF 21 FEET BELOW
EXISTING GRADE AND BACKFILLED WITH CLEAN COHESIONLESS SAND CLASSIFIED AS SP
OR SW IN THE UNITED SOILS CLASSIFICATION SYSTEM TO ENSURE ADEQUATE
PERMEABILITY FOR WATER TO DRAIN IN SEVEN DAYS OR LESS. THIS CONCEPT IS
EXPLAINED IN THE FOLLOWING SOIL ABSORPTION EVALUATION DATED MAY 8, 2006 BY
KRAZAN ASSOCIATES INC. IN MORE DETAIL.
UPON COMPLETION OF THE CONSTRUCTION OF THE BASIN, THE SOILS ENGINEER SHALL
PROVIDE THE CITY WITH WRITTEN VERIFICATION THAT THE SPECIAL REQUIREMENTS IN
THE FOLLOWING SOILS REPORT HAVE BEEN MET.
SOIL ABSORPTION EVALUATION
PROPOSED DRAINAGE BASIN —TRACT 6557
SWC BERSHIRE ROAD AND STINE ROAD
BAKERSFIELD, CALIFORNIA
PROJECT No. 022-05218
MAY 8, 2006
Prepared for:
MR. BOB BRANDT
STANDARD PACIFIC HOMES
1,500 HAGGIN OAKS BLVD., SUITE 101
BAKERSFIELD, CALIFORNIA 93311
Prepared by:
KRAZAN & ASSOCIATES, INC.
GEOTECHNICAL ENGINEERING DIVISION
2205 COY AVENUE
BAKERSFIELD, CALIFORNIA 93307
(661) 837-9200
FESSlJARo
O,y�
No. 2698, Tu
Expires Iuae 30, 2006 T
t
y a;
�E& ASSOCIATES, INC.
GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING
CONSTRUCTION TESTING & INSPECTION
May 8, 2006 KA Project No. 022-05218
Mr. Brian Grant
Standard Pacific flComes
1500 Haggin Oaks Blvd., Suite 101
Bakersfield, California 9331 1
RE: Soil Absorption Evaluation
Proposed Drainage Basin —Tract 6557
SWC Bershire Road and Stine Road
Bakersfield, California
Dear Mr. Brandt:
i In accordance with your request, we have completed a Soil Drainage Evaluation for the proposed
drainage basin for the above -referenced site. 'The results of our investigation are presented in the
attached report.
_ Ifyou have any questions, or if we may be of further assistance, please do not hesitate to contact our
office at (661) 837-9200.
a
Respectfully submitted,
ZAN &c ASS TES, INC.
I � �ESSfa
Dave R. tarosz, l SOW ? ,.
Managing Eli eer
RCE No. 60145/RGE N
w No.2658 rn
(^ Expires dune 30'. 2.006 a
DRJ:ch/da ,Y ..eL+OF
-
j,
F '
With Ten Offices Serving The Western. United States
2205 Coy Avenue o Bakersfield CA 93307 • (661) 837-9200 • Pax: (661) 837-9201
0-205219 Soil Absmrtiun EvalmOon
ii
& ASSOCIATES, INC.
GEOTECHNICAL ENGINEERING ® ENVIRONMENTAL ENGINEERING
CONSTRUCTION TESTING & INSPECTION
TABLE OF CONTENTS
INTRODUCTION ...................................... .................... ............................................. ............. ........................... I ...........
.... I
SOIL PROFILE AND SUBSURFACE CONDITIONS.............................................................................................1
GROUNDWATERCONDITIONS...................................................................:...............................................................2
PERMEABILITYTESTING......................................................................................................................................2
DRAINAGE...................................................................................................................................................................3
SITEPREPARATION......................................................:...................................................................:............................3
FEASIBILITY OF ON-SITE SOILS FOR USE AS ENGINEERED FILL..................................................................4
UTILITYTRENCH BACKFILL......................................................................................................................................5
PIPEBEDDING AND ENVELOPE.................................................................................................................................5
COMPACTEDMATERIAL ACCEPTANCE.................................................................................................................5
TESTING AND INSPECTION....6
.....................................................................................................................................
LIMITATIONS...................................................................................................................................................................6
SITEPLAN.........................................................................................................................................................8
LOGS OF BORINGS (X TO 3).................................................................................................... Appendix A
With Ten Ofiiees Serving The Western United States
2205 Coy Avenue o Bakersfield CA 93307 0 (661) 837-9200 o Fax: (661) 837-9201
02205218 ScQ Absocp0oo EvNwtiooAoc
KraZan
& ASSOCIATES, INC.
May 8, 2006
GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING
CONSTRUCTION TESTING & INSPECTION
KA Project No. 022-05218
SOIL ABSORPTION EVALUATION
-� PROPOSED DRAINAGE BASIN — TRACT 6557
SWC BERSIIIRE ROAD AND STINE ROAD
BAKERSFIELD, CALIFORNIA
INTRODUCTION
This report presents the results of our Soil Absorption Evaluation for the proposed drainage basin to be
located within the southwest corner of the proposed residential development identified as Tentative
Tract No. 6557 at Stine and Bershire Roads in Bakersfield, California. Krazan & Associates, Inc.
performed a Preliminary Geotechnical Engineering Investigation for the above -referenced residential
development dated February 28, 2006 (KA Project No. 022-05218). A total of 3 exploratory soil
borings were recently advanced within the proposed basin location to evaluate soil conditions and soil
absorption characteristics of the subsoils. In addition, 3 permeability tests were performed from soil
samples obtained from beneath the proposed drainage basin bottom, to evaluate the soil absorption
characteristics.
A site plan showing the approximate boring locations is attached. A description of the field
investigation, boring logs, boring log legend, along with the laboratory test results, are also attached.
SOIL PROFILE AND SUBSURFACE CONDITIONS .
Based on our findings, the subsurface conditions encountered within the area of the proposed basin
appear typical of those found in the geologic region of the site. In general, the surface soils consisted of
i 6 to 12 inches of very loose silty sand. These soils are disturbed, have low strength characteristics, and
are highly compressible when saturated.
Below the very loose surface soils, approximately 16 to 17 feet of loose to dense silty sand or sandy silt
J were encountered. Field and laboratory tests suggest that these soils are moderately strong, slightly
coin pressible,.and have low to poor absorption characteristics.
Below 17 to 20 feet, predominately silty sands and sands were encountered. These soils occasionally
contained minor lenses of sandy silt, Field and laboratory tests suggest that these soils have moderate to
good absorption characteristics. Representative soil samples had a coefficient. of permeabilityof 2.0 x
10'2 cm/sec to 5.1 x 10-2 cm/sec. These soils extended to the termination depth of our borings.
For additional information about the soils encountered, please refer to the logs of borings in Appendix
A.
With Ten Offices Serving The Western United States
2205 -Coy Avenue • Bakersfield CA 93307 • (661) 837-9200 • Fax: (661) 837-9201
022D521 B W1 AbuxpOon EvaloaUmdoc
KA No. 022-05218
Page No. 2
5
GROUNDWATER CONDITIONS
Test boring locations were checked for the presence of groundwater during and immediately following
the drilling operations. Free groundwater was not encountered.
It should be recognized that water table elevations may fluctuate with time, being dependent upon
seasonal precipitation, irrigation, land use, and climatic conditions, as well as other factors. Therefore,
water level observations at the time of the field investigation may vary from those encountered during
the construction phase of the project. The evaluation of such factors is beyond the scope of this report.
BASIN SLOPE STABILITY
Cq According to information provided by Santec Consulting Inc., the edges of the proposed basin will
consist of slopes approximately 15 feet high. Maximum proposed slopes along the edge of the basin are
proposed to be 2:1 (horizontal to vertical). The high basin water level is anticipated to be 13.55 feet.
The stability of the proposed basin slopes were analyzed using Geo Slope computer software. This
program uses the Bishop's Simplified Method to determine the factor of safety for slope stability. Slope
stability analysis was performed under static conditions. Angles of internal friction of 31 and 36
degrees were used in the slope stability analysis. Cohesion values of 50 to 150 pof were used in the
slope stability analysis. A high basin water level of 13.55 feet was used in the slope stability analysis.
Factors of safety on the order of 1.6 under static conditions were calculated for the proposed slopes.
The slope stability analysis indicates that the proposed slopes are relatively stable under static high
water level conditions. Therefore, it is not anticipated that slope stability will affect the proposed
development if the proposed 2:1 (horizontal to vertical) maximum slopes, are constructed properly. The
proposed slopes should be constructed in accordance with the recommendations of the above -referenced
Geotechnical Engineering Investigation.
PERMEABILITY TESTING
Three permeability tests were performed on undisturbed soil samples collected from depths of 20 to 31
feet below existing site grade. The permeability tests were performed in accordance with ASTM Test
Method D2434. The test results are as follows:
$orang.o.::.;bepth..Cfcet
:.:'_;-::::::::.Coefficlen�t:�uf:P r ea ili ::::::; E:;.
cm/.second ••-••
;:..::•;.::..::.::oil
-
B2a
20-21
5.1 x 10-2
Sand (SP)
B2a
25-26
2.0 x 10-2
Sand (SP)
B I a
30-31
4.4 x 10'2
Sand (SP)
Krazan & Associates, Inc.
With Ten Offices Serving The Western United States
022O521a Sotf ABsotpdoa EwWMio.da
KA No. 022-05218
Page No. 3
DRAINAGE
The proposed drainage basin is still in the design phase. It is estimated that the maximum volume of
water to be retained in the basin is 4.53 acre-feet. It is understood the basin will have a bottom. area of
approximately 6,272 square feet. The surface area at high water level is approximately 22,870 square
feet. It is anticipated that side slopes will be constructed at 2:1 (horizontal to vertical). it is anticipated
the high water level will be 13.55 feet above basin bottom.
Permeability tests were performed on the soils at depths ranging from 20 to 31 feet. These soils had
coefficients of permeability ranging from 2.0 x 10'2to 5.1 x 10''-em/sec.
Based on the proposed inflows, subsurface soil conditions, and provided the drainage basin has a
minimum bottom area of 6,272 square feet and extends to a minimum depth of 15 feet below existing
site grade, it is anticipated the basin will drain within 7 days provided the recommendations in the Site
Preparation section of this report are followed.
SITE PREPARATION
General site clearing should include removal of vegetation and existing utilities; trees and associated
root systems; rubble; and any loose and/or saturated materials. Site stripping should extend to a
minimum depth of 2 to 4 inches, or until all organics in excess of 3 percent by volume are removed.
Deeper stripping may be required in localized areas. These materials will not be suitable for reuse as
Engineered Fill. However, stripped topsoil may be stockpiled and reused in landscape or non-structural
areas.
Within areas to receive fill, following stripping operations, the upper 6 inches of soil should be
excavated/scarified to a depth of 6 inches, worked until uniform and free from large clods, moisture -
conditioned as necessary, and recompacted to a minimum of 90 percent of maximum density based on
ASTM Test Method D1557. It is recommended that the new fill to be placed within the slope be
benched into the slope. The bench should occur.at every lift and extend at least 4 feet into the existing
slope.
Any buried structures encountered during construction should be removed in accordance with the
recommendations of the Soils Engineer. The resulting excavations should be backfilled with
Engineered Fill.
in order to dispose of the water, within the required 7 days, mitigation measures are required. it is
recommended that the proposed drainage basin be constructed into the sandy soils encountered at the
site. it is recommended that the bottom of the basin is over -excavated to a depth of 21 feet from original
grade. The side slopes of the over -excavation should be excavated at 1:1 (horizontal to vertical) or
lower from the bottom of the basin. The resulting excavation should be backfilled to finished basin
grade with clean sand (less than 5 percent passing the No. 200 sieve). The sand should not be
compacted to more than 85 percent of maximum density based on ASTM .Test Method D1557. It is
further recommended that a representative of our firm inspect the excavation operation to verify soil
Krazan & Associates, Inc.
With Ten Offices Serving The Westem United States
02-10521 i Suil Abwrptim Evaluation
KA No. 022-05218
Page No. 4
conditions below the bottom of the basin. The estimated soil absorption factors presented in this report
are based on clear water and a factor of safety should be incorporated into the design of the drainage
basin to compensate for soil clogging from water impurities.
The long -terns absorption rate is highly dependent on the quality of infiltration water and the drainage
basin maintenance. To maintain an adequate absorption rate, a maintenance program will be required.
Annual maintenance should include the following:
Annual removal of the top 1 to 2 inches of sediment collecting on the surface of the
basin. This will help removal of the silt and clay sediment from accumulating from
the surface and reduce the potential of silting (clogging) the upper soils within the
pond.
2. Vegetation within the basin should be stripped or mowed yearly and removed from
the basin site. The vegetation shall not be disced within the basin soils. Discing of
organic material will reduce the upper soils permeability.
The upper soils, during wet winter months become very moist due to the absorptive characteristics of
the soil. Earthwork operations performed during winter months may encounter very moist unstable
soils, which may require removal to grade a stable building foundation. Project site winterization
consisting of placement of aggregate base and protecting exposed soils during the construction phase
should be performed.
A representative of our firm should be present during all site clearing and grading operations to test and
observe earthwork construction. This testing and observation is an integral part of our service, as
acceptance of earthwork construction is dependent upon compaction and stability of -the material. The
Soils Engineer may reject any material, that does not meet compaction and stability requirements.
Further recommendations of this report are predicated upon the asbasintion that earthwork construction
will conform to recommendations set forth in this section and the Engineered Fill section.
FEASIBILITY OF ON-SITE SOILS FOR USE AS ENGINEERED FILL
The on-site soils are predominately silty sands, sandy silts, and sands. These soils will be suitable for
reuse as Engineered Fill, provided they are cleansed of excessive organics and debris.
The preferred materials specified I'or Engineered Fill are suitable for most applications with the
exception of exposure to erosion. Project site winterization and protection of exposed soils during the
construction phase should be the sole responsibility of the Contractor, since he has complete control of
the project site at that time.
! Fill soils should be placed in lifts approximately 6 inches thick, moisture -conditioned as necessary, and
compacted to achieve at least 90 percent maximum density based on ASTM Test Method 131557.
Additional lifts should not be placed if the previous lift did not meet the required dry density or if soil
conditions are not stable.
r
Krazan & Associates, Inc.
With Ten Offices Serving 'Me Western United States
02205219 Sat Abs"don EvAmdob.doa
KA No. 022-05218
Page No. 5
UTILITY TRENCq BACKFILL
Drainage pipes may be installed in conjunction with the construction of the drainage basin. Trenches
should be excavated according to accepted engineering practice following OSHA (Occupational Safety
and Health Administration) standards by a Contractor experienced in such work. The responsibility for
the safety of open trenches should be borne by the Contractor. Traffic and vibration adjacent to trench
walls should be minimized; cyclic wetting and drying of excavation side slopes should be avoided.
Depending upon the location and depth of some utility trenches, groundwater flow into open
excavations could be experienced; especially during or following periods of precipitation.
Utility trench backfill placed in or adjacent to buildings and exterior slabs should be compacted to at
least 90 percent of maximum density based on ASTM Test Method D1557. Utility trench backfill
placed in pavement areas should be compacted to at least 90 percent of maximum density based on
ASTM Test Method D1557. Pipe bedding should be in accordance with pipe manufacturer's
recommendations.
The Contractor is responsible. for removing all water -sensitive soils from the trench regardless of the
backfill location and compaction requirements. The Contractor should use appropriate equipment and
methods to avoid damage to the utilities and/or structures during fill placement and compaction.
PIPE BEDDING AND ENVELOPE
Proper bedding and envelope should be provided for pipes. The bedding surface should be smooth and
true to the design grade. At least 12 inches of compacted cohesionless soil bedding (100 percent
passing the No. 4 Sieve avid not more than 8 percent passing and No. 200 Sieve) should be provided
below the pipes. An envelope of sandy backfill material should be placed along the sides of the pipe
and a minimum depth of 12 inches or'/a H over the top of pipe (H is the height of soil backfill above the
top of the pipe).
Within soft and wet trenches, it is recommended to use a minimum of 6 inches of standard bedding
underlain by 6 to 12 inches of coarse bedding material (100 percent passing the 2 -inch sieve, 90 to 100
percent passing the 1%z -inch Sieve, 30 to 50 percent passing the'/, -inch Sieve, 5 to 20 percent passing
the 3/a -inch Sieve, and not more than 4 percent passing the No. 200 Sieve).
Pipe bedding and envelope should be brought to near optimum moisture content, placed in loose lifts
not more than 8 inches in thickness, and compacted to achieve at least 85 percent of maximum density
based on ASTM Test Method D1557 test procedure. Due to space limitations, a hand compactor may
be required.
COMPACTED MATERIAL ACCEPTANCE
Compaction specifications are not the only criteria for acceptance of the site grading or other such
activities. However, the compaction test is the most universally recognized test method for assessing
the performance of the Grading Contractor.. The numerical test results from the compaction test cannot
Krazan & Associates, Ine.
With Ten Offices Serving The Western United States
OXM218 "[ Abso"iaa Evalw$wdoe
KA No. 022-05218
Page No. 6
be used to predict the engineering performance of the compacted material. Therefore, the acceptance of
compacted materials will also be dependent on the stability of that material. The Soils Engineer has the
option of rejecting any compacted material regardless of the degree of compaction if that material is
considered to be unstable or if future instability is suspected. A specific example of rejection of fill
material passing tyle required percent compaction is a fill which has been compacted with an in situ
moisture content significantly less than optimum moisture. This type of dry fill (brittle fill) is
susceptible to future settlement if it becomes saturated or flooded.
TESTING AND INSPECTION
A representative of Krazan & Associates, Inc. should be present at the site during the earthwork
activities to confirm that actual subsurface conditions are consistent with the exploratory fieldwork.
This activity is an integral part of our service, as acceptance of earthwork construction is dependent
upon compaction testing and stability of the material. This representative can also verify that the intent
of these recommendations is incorporated into the project design and construction. Krazan &
Associates, Inc. will not be responsible for grades or staking, since this is the responsibility of the Prime
Contractor.
LIMITATIONS
Soils Engineering is one of the newest divisions of Civil Engineering. This branch of Civil Engineering
-�_ is constantly improving as new technologies and understanding of earth sciences advance. Although
your site was analyzed using the most appropriate and most current techniques and methods,
undoubtedly there will be substantial future improvements in this branch of engineering. In addition to
advancements in the field of Soils Engineering, physical changes in the site, either due to excavation or
fill placement, new agency regulations, or possible changes in the proposed structure after the soils
report is completed may require the soils, report to be professionally reviewed. In light of this, the
Owner should be aware that there is a practical limit to the usefulness of this report without critical
review. Although the time limit for this review is strictly arbitrary, it is suggested that 2 years be
considered a reasonable time for the usefulness .of this report.
The infiltration rates and life of the basin are estimates. The recommendations provided in this report
will provide a basin which has good initial absorption characteristics. The long-term .performance of the
basin is difficult to estimate due to the uncontrolled variables.
Foundation and earthwork construction is characterized by the presence of a calculated risk that soil and
groundwater conditions have been fully revealed by the original foundation investigation. This risk is
derived from the practical necessity of basing interpretations and design conclusions on limited
sampling of the earth. The recommendations made in this report are based on the assumption that soil
conditions do not vary significantly from those disclosed during our field investigation. if any
variations or undesirable conditions are encountered during construction, the Soils -Engineer should be
notified so that supplemental recommendations may be made.
Krazan & Associates, We.
With Ten Offices Serving The Western United States
02205218 Soil Abmrpdw E% -MJ 1idMd0C.
KA No. 022-05218
Page No. 7
The conclusions of this report are based on the information provided regarding the proposed
construction. If the proposed construction is relocated or redesigned, the conclusions in this report may
not be valid. TlreC it t;rtghider should be -notified of any changes so th6-recommendations maybe
reviewed and re-evaluated.
, J
This report is a Soil Drainage Evaluation with the purpose of evaluating the soil conditions in terms of
foundation design. The scope of our services did not -include any Environmental Site Assessment for
the presence or absence of hazardous and/or toxic materials in the soil, groundwater, or atmosphere; or
the presence of wetlands. Any statements, or absence of statements, in this report or on any boring log
regarding odors, unusual or suspicious items, or conditions. observed, are strictly for descriptive
purposes and are not intended to convey engineering judgment regarding potential hazardous and/or
toxic assessment.
The geotechnical engineering information presented herein is based upon professional interpretation
utilizing standard engineering practices and a degree of conservatism deemed proper for this project. It
is not warranted that such information and interpretation cannot be superseded by future geotechnical
engineering developments. We emphasize that this report is valid for the project outlined above and
should not be used for any other sites.
If you have any questions, or if we may be of further assistance; please do not hesitate to contact our
office at (661) 837-9200.
SN/DRJ:ch/da
R-'
Respectfully submitted,
KI AZAN & ASSOCIATES, INC.
Steve Nelson
Project Engineer _ n
1 ref
Q
Dave R. Jar z, 11 ,/� p / O',.
Managing Engineer
RCE No. 60185/RG N
. zssa
cc fxkcsJune 30. 2006
=
Krazan & Associates, inc.
With Ten Offices Serving The Western United States
x
02205211 Soil Abwrpdon Evalustkn
4z
0
to
is
d
Q
i
Appendix A
Page A.1
APPENDIX A
FIELD INVESTIGATION
Field Investiention
The field investigation consisted of a surface reconnaissance and a subsurface exploratory program.
Three 4%2 -inch exploratory borings were advanced. The boring locations are shown on the attached site
plan.
The soils encountered were logged in the field during the exploration and are described in accordance
with the Unified Soil Classification System.
The logs of the exploratory borings are presented in this Appendix.
1
l
J
1
a
Krazan & Associates, Inc:
With Ten Offices Serving The Western United States
0220.521S Soil Ab"ion E%W%mdtw4w
UNIFIED SOiL CLASSIFICATION AND SYMBOL CHART
Description Blows per Foot
COARSE-GRAINED SOILS
(more than 50% of material Is larger than No. 200 sieve size.)
< 5
Clean Gravels (Less than 5% fines)
5-15
GW I Well -graded gravels, gravel -sand
GRAVELS
mixtures, little or no fines
More than 50%,o GP Poorly -graded gravels, gravel -sand
of coarse
�a mixtures, little or no fines
fraction larger
Gravels with fines (More than 12% fines
than No. 4
Soft
sieve size
GM Silty gravels, grave{ -sand -silt mixtures
6-10
GC Clayey gravels, gravel -sand -clay
11-20
mixtures
21-40
Clean Sands Less than 5% fines
> 40
SW gravelly sands,
4.76 to 2.00
littlelor no finseasnds,
SANDS
2.00 to 0.042
506A or moreSp
Poorly graded sands, gravelly sands,
of coarse
little or no fines
fraction smaller
than No. 4
Sands with fines More than 12% fines
sieve sizeSM
Silty sands, sand -sift mixtures
SC Clayey sands, sand -clay mixtures
FINE-GRAINED SOILS
(50% or more of material is smaller than No. 200 sieve size.)
Inorganic silts and very fine sands, rock
SILTS
I
ML
flour, silty of clayey fine sands or clayey
AND
silts with slight Plasticity
inorganic clays of low to medium
CLAYS
Liquid limit
CL
Plasticity, gravelly clays, sandy clays,
less than
silty clays, lean days
50%
OL
Organic silts and organic silty days of
low plasticity
Inorganic silts, micaceous or
MH
diatomaceous fine sandy or silty soils,
SILTS
elastic silts
AND
CH
inorganic clays of high plasticity, fat
CLAYS
Liquid limit
clays
50%
or greater
OH
Organic clays of medium to high
Plasticity, organic slits
HIGHLY
"
ORGANIC L' it
PT
Peat and other highly organic soils
SOiLS
CONSISTENCY C -L SIF.ICATION
Description Blows per Foot
Granular Soils
Very Loose
< 5
Loose
5-15
Medium Dense
16-40
Dense
41-65
Very Dense
> 65
Cohesive Soils
Very Soft
< 3
Soft
3-5
Firm
6-10
Stiff
11-20
Very Stiff
21-40
Hard
> 40
GRAN SIZE;CLA55TF1CAT.1 ON::::::
Grain Type
Standard Sieve Size
Grain Site in
■MMINIMMIr
Millimeters
Boulders
Above 12 inches
Above 305
Cobbles
12 to 13 inches
305 to 76.2
Gravel
3 inches to No. 4
76.2 to 4.76
Coarse-grained
3 to % inches
76.2 to 19.1
Fine-grained
% inches to No. 4
19.1 to 4.76
Sand
No. 4 to No. 200.
4.76 to 0.074
Coarse-grained
No. 4 to No. 10
4.76 to 2.00
Medium -grained
No. 10 to No. 40
2.00 to 0.042
Fine-grained
No. 40 to No. 200
0.042 to 0.074
Silt and Clay
Below No. 200
Below 0.074
60
01so
a
40
0
}z 30
20
g 10
IL
1 ,,•
MEMO
ENDS
■■■NIM■M!NN
■MMINIMMIr
■EMME
EM
■.!.■.■■■
MEN=01000
0 10 20 30 40 50 W 70 e0 90 Joe
LIQUID LIMIT (LL) (%)
Log of Drill Hole 131
Project: Tentative Tract 6557 Project No: 022-05218
Client: Standard Pacific Homes Figure No.: A-1
Location: SWC Bershire Road & Stine. Road, Bakersfield Logged By: Wayne Andrade
Depth to Water> Initial: None At Completion: None
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 45C Krazan and Associates Hole Size: 4'/Z inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 1 of 3
SUBSURFACE PROFILE
SAMPLE
Penetration Test
�
blows/ft
g
Water Content (%)
Description
v,
w
O
N
C
CL
Q
o
`�
20 40 60
10 20 30 40
Ground Surface
SANDY SILT (ML)
Very loose, fine-grained; dark brown,
moist, drills easily
;
2
Loose below 12 inches
_ ....:..............:-.............._
Medium dense, light brown, and damp
97.1
8.9
23
`•
below 2 feet
4
104.9
8.5
23
a'
E
'
_ -.-_•_--i-_--_
8 SILTY SAND (S)
Dense, fine- to medium -grained; light
brown, damp, drills firmly
10-
120.2
3.4
43
.......
i
SILTY SAND/SANDY SILT (SM/MLJ
14 Medium dense, fine-grained; light brown,
damp, drills easily
118.5
3.8
35
i
16
--- ---r• i
--
18 SAND (SP)
��'•`- Dense, fine- to medium -grained; light
v:+ gray. damp, drills firmly
........ ' -•_ _-'
--___--
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 45C Krazan and Associates Hole Size: 4'/Z inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 1 of 3
Log of Drill Hole 131
Project: Tentative Tract 6557 Project No: 022-05218
Client: Standard Pacific Homes Figure No.: A-1
Location: SWC Bershire Road & Stine Road, Bakersfield togged By: Wayne Andrade
Depth to Watery Initial: None At Completion: None
SUBSURFACE PROFILE
SAMPLE
Penetration Test
n
blows/ft
Water Content (%)
Description'
V!
n E
O
n
as
A cn
220
0
A
°
20 40 60
10 20 30 40
t--
m
:1'
103.2
1.5
41
22''
—
113.4
20.6
43
26
SIL TY SA (SM/ML)
Dense, fine-grained. olive brown, moist,
'
drills firmly
=
i
SAND (SP)
28_
Dense, fine- to medium -grained: light
- - ....... -
grayish -brown, damp, drills firmly
30
J6.t]
3.4
42
.......... _......_-... _. _L..__._..
2
32-
34
108.5
3.2
57
t —' - -
i V.:
-
38 a'
40
59
[ijj]L23.0=
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 45C Krazan and Associates Hole Size: 4% inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 2 of 3
Log of Drill Hole 131
Project: Tentative Tract 6557 Project No: 022-05218
Client: Standard Pacific Homes Figure No.: A-1
Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade
Depth to Water> Initial: None At Completion: None
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 46C Krazan and AssoGlates Hole Size: 4'/Z inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 3 of 3
SUBSURFACE PROFILE
SAMPLE
Penetration Test
blows1ft
g
Water Content (%)
Description'
N
o E
a
o v>i
a
o
20 40 60
110 20 40
tCL
_ ^30
2
42-
44-
Very
Very dense below 45 feet
94.5
13.1
50+
:::
_...... r. _... _ ....s_._. _._.•
ter;
48-
8
f• j
g
5
End of Borehole
_ - - - - ---
52
54
58
60
-
_ .............. .;.�..� .. ...
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 46C Krazan and AssoGlates Hole Size: 4'/Z inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 3 of 3
• g of Drill Hole i
Project: Tentative Tract 6557
Client: Standard Pacific Homes
Location: SWC Bershire Road & Stine Road, Bakersfield
Depth to Water> Initial: None
Project No: 022-05218
Figure No.: A-2
Logged By: Wayne Andrade
At Completion: None
SUBSURFACE PROFILE SAMPLE
Penetration Test
blows/ft
Water Content (%)
Description
v
q
o vTi o
in
20 40 60
10 20 30 40
HT
Ground Surface
SANDY SILT (ML)
Very loose, fine-grained; dark brown,
moist, drills easily
_
2
Loose below 12 inches
110.9
13.6
8
`
4
_.'- �-•-----
-- -Medium
SILTY SAND (SM)
Mediumdense, fine- to medium -grained;
tight brown, damp, drills easily
_ ~
125.3
6
3.0
29
:.•.::: •
L........... _ _...
;mate SAND (SP).
Medium dense, fine- to medium -grained;
light gray, damp, drills easily
10
101.9
2.7
22
-_~ • --. --
12:,
'
_ --
14 •Y�`
• '
Kt
2.5
12
16 SANDY SILT (ML) 102.6
16
Loose, fine-grained; brown, moist, drills
-----}—�—
easily
SAND (SP)
! ....
18 Medium dense, fine- to medium- rained;
g
_..._....._._............ _.
light gray, damp, drills easily
ZO i'Ii:•1
..i...
Drill Method: Solid Flight
Drill Rig: CME 45C
Driller: Chris Wyneken
Drill Date: 4-27-06
Hole Size: 4% inches
Elevation: 50 Feet
Sheet: 9 of 3
Log of Drill bole 132
Project: Tentative Tract 6557 Project No: 022-05218
Client: Standard Pacific Homes Figure No.: A-2
Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade
Depth to Water> Initial: None At Completion: None
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 46C Krazan and Associates Hole Size: 4'/s inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 2 of 3
SUBSURFACE PROFILE
SAMPLE
Penetration Test
blows/ft
Water Content (%)
Description
;✓
c
i E
h a�
Cl)o
m
20 40 60
10 20 30 40
_- _
Vic; t
102.2
3.3
34
24
................. --------••----
26 SANDY SILT (ML)
99.8
3.1
30
•
Medium dense, fine-grained; olive
---- - - "- '-- --
brown, moist, drills easily
SAND (SP)
--"---
- - •--
28 :;:'„":: Dense, fine- to medium -grained; light
'J- gray, moist, drills firrnly
30
95.3
•7.3
53
,-
32
101.1
3.6
60
.......... -
38 `�`' Very dense below 38 feet
40
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 46C Krazan and Associates Hole Size: 4'/s inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 2 of 3
Log of Drill Hole 133
Project: Tentative Tract 6557 Project No: 022-05218
Client: Standard Pacific Homes Figure No.: A-3
Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade
Depth to Water> Initial: None At Completion: None
SUBSURFACE PROFILE
SAMPLE
Penetration Test
blows/ft
Q
Water Content (°�)
Description
CL E
c
C3 U)
z
o
T
a
di
20 40 60
10 20 30 40
Ground Surface
....._:...:....... -
SANDY SILT (ML)
Very loose, fine-grained; dark brown,
moist, drills easily
2
Loose below 12 inches
Medium dense, light brown, and damp
__....;........ _......... _.._...
below 2% feet
_......::......,.€_.... _. .... ___...__.
4
._ .... ._.... _._ .... _.. _.:.
SILTY SAND (SM)
Medium dense, fine- to medium -grained;
_......__._......_ ___...._....---
8 light brown, damp, drills easily
10
--. _...... -
12
SANDY SILT/SIL TY SAND(SM/ML)
Medium dense, fine-grained; fight brown,
damp, drills easily
__..__.___._.... ....._.._._..
SANDY SILT (ML)
Medium dense, fine- to medium -grained;
............. ...... .i .._...........
16
light brown, damp, drills easily
SILTY SAND (SM)
Medium dense, fine- to medium -grained;
__..._._.._._... _.'_......
;
181
light brown, damp, drills easily
..... _......_. _....._. `:_....__._
20
'
;.._._.__s...._...._....__ .... _.....
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 45C Krazan and Associates Hole Size: 4Ya inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 1 of 3
• • ofDrill Hole i
Project: Tentative Tract 6557
Client: Standard Pacific Homes
Location: SWC Bershire Road & Stine Road, Bakersfield
Depth to Water> Initial: None
Project No: 022-05218
Figure No.: A-3
Logged By: Wayne Andrade
At Completion: None
SUBSURFACE PROFILE
SAMPLE
Penetration -rest
blows/ft
n
Water Content (%)
Description
0
r
a�
m %
oto
o
a
o
ai
20 40 60
10 20 30 40
o
f-
_._.... ........ ....... ---
..,.
SAND (SP)
-= Medium dense, fine -.to medium -grained;
22 _ light gray, moist, drills easily
:
24
26
E
E I
28
30
; .. .;_...__ .....
36-
6
38
38
40
Drill Method: Solid Flight
Drill Rig: CME 45C
Driller: Chris Wyneken
r • •
Drill Date: 4-27-06
Hole Size: 4"/$ inches
Elevation: 50 Feet
Sheet: 2 of 3
Log of Drill Hole 133
Project: Tentative Tract 6557 Project No: 022-05218
Client: Standard Pacific Homes Figure No.: A-3
Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade
Depth to Water> Initial: None At Completion: None
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 45C Krazan and Associates Hole Size: 4% inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 3 of 3
SUBSURFACE PROFILE
SAMPLE
Penetration Test
blows/ft
g
Water Content (%)
Description\_,
0
o
m
E
�
d
y
y
CL
p
T
20 40 60
10 20 30 40
cc0
Hi
42-
44 •}: F "
t s
ij
q�+ is
46
•; �Yi
50
End of Borehole
- ---- --y"- '
52-
25456
54-
56-
58
...................
60
Drill Method: Solid Flight Drill Date: 4-27-06
Drill Rig: CME 45C Krazan and Associates Hole Size: 4% inches
Driller: Chris Wyneken Elevation: 50 Feet
Sheet: 3 of 3
im
.0
Stantec
RDR, TRACIII! x'15157
CITY 111
APPENDIX
Jul. 17, 06
4.8 APPENDIX 8: CALCULATION METHOD FOR THE STREET FLOW
1114TER DEPTH AT THE GUTTER
Dimensional Variables: (See attached figure)
D: Curb height = 0.5 feet
y: Sidewalk run: 5 feet
Ss: Sidewalk rise = 0.1 feet (2% slope)
Tg: Curb run = 0.125 feet
W. Gutter width = 2 feet
z: pavement width =16 feet
Hg: Gutter rise = 0.167' (8.33% slope)
Hp: Pavement rise = 0.32' (2% slope)
Hydraulic Coefficients:
Nc: Manning's roughness coefcientfor the concrete curb and gutter = 0.015
Np: Manning's roughness coefficientfor the road mix pavement = 0.018
Mannings equation:
V = K Rails 112
n
Where:
V.• velocity (ft/sec)
K.• constant =1.49
S.• Longitudinal slope (ftfft)
R: Hydraulic radius, R = `4
A: Flow cross-sectional area (ft2)
P: Wetted perimeter (ft)
The Manning's equation can be used to calculate an irregular section with different
roughness coefficients. The solution can be calculated for two different conditions. In
the first case the water is flowing in the gutter section only (d < 0.167 ft). The second
case is where water spreads to the pavement.
•
SIDEWALK GUTTER
PAVEMENT
Case 2 (gutter depth<waterdepth<ctqb height)
GUTTER PAVEMENT
PAVEMENT
211,
W.
Hp
T&
DRAINAGE REPORT
STREET FLOW WATER DE
zitantec uonsuning Inc.
AdEkk
1400 18th Street
Pokeirsfield, CA
93301
Tel. 661.616.0000.
StantlK
Fox. 661..616.2400'
www.stantec.com
Hp
T&
DRAINAGE REPORT
STREET FLOW WATER DE
Therefore, using the dimensional variables above the flow velocity in case 1 can be
expressed as;
Case 1 ( d < 0.167)
V = (1.49)(0.469d)213 5112
0.015
Where;
A=6.11d2
P=13.04d
R = 0.469d
For d = 0.167 then,
A = 0.1704
P = 2.1777
R = 0.0782
Case 2(0.167<d<0.5)
V = (1.49) (0.125d2 -d-2.038d-0.168) 5/3 + (25(d-0.167)2)113 (S)112
(0.015)(1.031d+2.007)213 (0.018)(50.04d-8.3567) 213 (25.125d 2 — 6.312d + 0.529
Where;
Al = 0.125d2 + 2.038d — 0.168
Pt=1.031d + 2.007
_ 0.125d 2 + 2.038d — 0.168
R' 1.03 ld + 2.007
A2 = 25(d — 0.167)2
P2= 50.04d — 8.3567
R2 =0.5d — 0.0835
Using the above formulae it is possible to calculate the runoff flow velocity for any
assumed water depth.
All
11.1 IBM
➢ Calculate the tributary area, (AT)
Find the longest flow path, (L)
➢ Assume a gutter flow depth, (d)
➢ Calculate the street flow velocity, (VQ)
➢ Calculate the street flow cross sectional area, (A,)
➢ Calculate the flow travel time in minutes,
T, V C60)
0
➢ Calculate total critical time,
T,� =15 min+ T
➢ Find the corresponding intensity from -the duration intensity curve (Figure D-1
City of Bakersfield Subdivision and Engineering Design Manual)
Calculate the peak runoff,
Q = (C)(I)(AT )
Calculate street flow velocity
Vf = AC
If V f = Vp stop, else calculate the flow depth (d) that corresponds to. Vf.and restart
from the fourth step until both velocities are equal or adequately close.
M.
Stantec
APPENDIX
Jul. 17, 06
4.9.1 Curb Opening Inlet Dimensioning
STANTEC v:kprojects\270054.00kdraln\drainage reporUr6557.doc 4.21
7"
0
Iq
lq
Iq
U�
U)
C)
u)
:4")
ul
q
Iq
9
(n
0
6'
C'i
m
S'),
q
th
co
41)
1E 19
Ce)
0)
CF)
'ct
V)
(D
0
t-
0
-t
w
c)
N
75
10
0
0
-
LO
"t
'q
Q
t-
0
m
0
cl
I
m
0
6
CV
6
CV
CV
cV
CV
c6
N
"i
C
6
c6
cli
cli
ro
N
04
C4
C\l
C-4
C-4
N
C-4
N
N
N
C14
Cq
C-4
N
L6
(7)
cy)
0)
O
-4
cc)
Lc)
0)
N
c)
q
M
(C)
fl.LO
clvi
'n
N
M
M
N
c'4
7
0
C)
C>
C)
0
C:)
0
C,
C)
0
O
C)
c)
C>
c:>
M
cyi
UL
to
Lo
0
to
Lo
if)
Lo
u)
L')
L')
u.)
L')
Lo
0
C)
C)
c)
C)
0
0
0
0
0
0
0
0
c::!
q
00a
a
0
Cl
a
C'
0
c:)
0a
C
U)
0
0)
Q.
.
.
.
ol
I
I
C:
0 [2
E
M
m
m
Im
0
c')
M
0
m
m
0
m
m
0
0
(D
'cL
0
co
co
co
m
W
c)
w
c)
w
0
w
M
w
cl)
cl)
m
cy)
0
w
co
W
Mm
W
co
co
U-
c!
O
O
O
O
O
q
q
O
O
O
O0
-2
0
c3
O
O
O
CD
C3
O
CD
a
c)
c.
C:
0
(N
04
C'l
CN
C14
C\l
04
N
C4
N
N
N
N
N
N
N
70
a-
I'm
cm
cm
m
(m
M
cn
D)
cm
tm
cm
cn
CD
C;c
U)
C,
A
0
N
—E
"E
"E
-E
-E
-E
00
—
—
—
—
—
—
—
—
—
—
0
-2
-2
-2
-2
E
E
-2
-2
-e
U-
Ij
0
0
0
0
o
o
0
0
0
0
0
0
0
0
0
U)
co
(D
r-
t-
C-4
oo
C'4
0
cD
()0
cy)
(D
'q
o)
0
r_
U)
N
Lq
(.q
(q
(q
r'7
O(q
"4:
(1
c!
u)
r-
(D
c
C)
M
C)
o
C)
C)
—
—
—
—
a
O
C;
cu
"Lu"
O
,
,
"
Ul)
,
'0
W�.
Uq
Uq
9)l(')t(')(t74,
U�
l
4
4
"i
6V'
M—cl)
'0
CO
'(1),
co
C9
(1)
C')
13)
C::
w
Lo
a
Lo
m
N
CO
r--
r-
m
0
1-,
0
C)
a
N
O7
Iq
O
h
14:
7
O
O
Cq
cq
(C)
C)
CO
(D
CO
M
co
co
N
-q
4
m
(\I
m
m
CV
cli
Cl
7
C14
,r
LO
CD.
(N
LO
N
LO
C>
LO
(0
LO
co
-,t
N
00
to
(I
m
P?
11
"
cl
M
M
M
c!
"
7
"
"
c!
7
CD.
O
(5
C)
6
a
C)
cn,
a
C)
C)
C)
0
c,
CD
6
(Yi
FL
0
(n
:0-,-
LL�2
u2
Lo
to
0
Lo
Lo
Lo
U)
Lo
C:
0
0
0
0
0
C)
C)
C)
CD
C)
C,
C)
a
a
C)
0
C)
4
6
ci
0
C;
ci
0
6
6
6
6
6
6O
M
E
0
C:
rn
CL
N cn
a)
'0 CY)
0
E
M
M
0
C,)
C,)
M
C,)
M
C,)
C,)
C,)
Ce)
M
M
M
0
CL
co
co
co
co
CC)
co
co
co
co
00
co
co
co
co
co
co
U -
7 ;,o
o
c)
C:)
c)
6
C:)
3
c,
C)
a
�
0
0
a
C)
CD
CD
0
a) C:
.0
O
=3 (n
N
N
N
N
N
N
N
N
C4
N
N
N
N
N
N
C\l
E • E
0 E
CIO
'n
co
w
w
co
w
0
co
w
w
co
co
U)
U)
U)
-E
'E
00
42 0
c
c
C
Cs
C:
S
s
s
c
c
a
c
c
t4 Q)
e
e
-e
e
E
e
e
e
e-2
e-2
e
e
:3
=3
=J
=3
=3
=1
=3
=J
=3
M
M
M
LL
C)
C)
U
U
U
U
U
C)
U
C)
C-)
0
C)
N
461.-
1�5 4 ;:,
co
i
"m �(;�
CD
CO
r-
CO
LO
C,
CO
(0
a)
-t
LO
0)
(n
O)
O"
cq
O7
Ir!
m"
r_
C)
—
—
—
C)
(14
a
CD
0
C$
0
C'
a)
.0
cu CY)
:3 0 m 0
Stantec
APPENDIX
Jul. 17, 06
4.9.2 Inlet Nomographs of City of Bakersfield
STANTEC v:kprojects\270054.00\drain\drainage reporUr6557.doc 4.22
• Sfl � 1-.�CFi l ,� 1� Gi�TCH � i�Si N �`
W oKST CA.5 E, Q t o= 3.1 7 C FS�
CITY OF BAX ERSFi7ELD
INLET CAPACITY -IN A SAG
TYPE "A" STANDARD CATCH' BASIN
h = height of openiing = 7" H = water depth = 8" 111h=1.14
I.o t2
. 5
11 to 4
.9 e
10 6
a7 O 3 1.6 cfI/f. t
ZS W 2
.s CL
v 1.0 •, a d
L r
;n .6
F- W i
WW 5 .�
4 4 z
z �
CL
0
nW �� 3.5
® F®.
o ® c'
LL
® i o
x p ,06
z x O .04
. 2 w .03
CL
U
cld
d
J 5 c� .0I
L ®�
�?:.• ;. CURB
1.5 - »; •';° ®h •� 'HEIGHT
®106tiL ®EPRESSION ( t
NOMOGRAPH FOR CAPACITY OF
CURB OPENING INLETS. AT LOW POINTS
z
W
Zf='
0
ti -
0 0
F -
x
0
w`
2
I.�
1.6 x 3.5-= 5.6
for 3'- 6" wide
1.0 curb opening
.9 =c 4 cG.'2
.6 h o.5®
.7Q108C _.3.17 (�t.
1
S'
:A�
T
-�Y
A
X ly,
v 'AWI
-1 N
AK
e
LEGEND CAUTION
Solid Liiiis, .0.10' 061jer depression, This charl*6ii0liti only to side openings
DasW Lines *,0.25'* gutter depression
p6o.jNJio:9Il4'd;rtclio, if the Ini. tctpttd Itow
11 , - 5. percent — I merit cress
L a Length Of 'Opening -owbowon . p rctA povt
slop® --iond the gutter depressign Cross slope.
41
Capacity Cubic Feet :per, Secondj
I)SS (Gt') DO -F S No T DAM
-TE - -FA K T 6,55-1
Cot�S Isl oF Cupg ofvNiOG
- --- I
...
�.�■■■sum....■n■■
'��
.Ill�llt�\� til
'::'
a in
�i � `�i��
ELI
NONE
1101
41
Capacity Cubic Feet :per, Secondj
I)SS (Gt') DO -F S No T DAM
-TE - -FA K T 6,55-1
Cot�S Isl oF Cupg ofvNiOG
DRAINAGE" Pi'11-011"'Y
HELD
APPENDIX
Jul. 17, 06
4.10 TRACT 6557 STORM SEWER MODEL
4.10.1 Storm Sewer Summary Report
STANTEC v:\projects\270054.00\drain\drainage reporL.V6557.doc 4.23
Storm
.. Report
Page 1
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
HGL
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
Junct
line
(cfs)
(in)
(ft)
(ft)
(ft)
N
(ft)
(ft)
(ft)
(ft)
No.
1
CB 30
36.09
48 c
41.6
336.75
337.10
0.841
343.03*
343.06*
0.06
343.12
End
2
35.48
48 c
23.0
337.10
337.16
0.261
343.12*
343.14*
0.12
343.26
1
3
23.46
36 c
42.4
338.16
338.27
0.259
343.26*
343.32*
0.17
343.49
2
4
23.46
36 c
42.4
339.49
339.59
0.236
343.49*
343.54*
0.17
343.71
3
5
20.41
36 c
418.7
340.48
341.53
0.251
343.75
344.11
0.16
344.26
4
6
19.50
36 c
495.8
341.53
342.77
0.250
344.30
.344.73
0.25
344.97
5
7
19.50
36 c
271.2
342.77
343.45
0.251
345.10
345.35
0.26
345.62
6
8
15.86
30 c
279.7
343.95
344.65
0.250
345.72
346.31
0.33
346.64
7
9
13.23
30 c
280.0
344.65
345.35
0.250
346.85
347.12
0.20
347.32
8
10
10.46
24 c
135.0
345.85
346.18
0.244
347.34
347.70
0.26
347.96
9
11
8.72
24 c
145.0
346.18
346.55
0.255
348.01
348.19
0.16
348.34
10
12
8.72
24 c
48.4
346.55
346.67
0.248
348.34
348.40
0.14
348.54
11
13
6.92
18 c
233.0
347.17
347.64
0.202
348.54*
349.61*
0.24
349.75
12
14
5.62
18 c
175.6
347.64
348.00
0.205
349.83*
350.33*
0.16
350.49
13
15
1.83
18 c
176.2
348.00
348.35
0.199
350.63*
350.68*
0.02
350.70
14
16
CB 26
2.41
18 c
16.3
342.00
342.05
0.308
343.85*
343.86*
0.03
343.89
4
17
CB 29
0.64
18 c
23.0
342.00
342.15
0.652
343.88*
343.88*
0.00
343.88
4
18
0.91
18 c
52.4
347.00
347.20
0.382
347.36
347.59
0.09
347.69
5
19
3.64
18 c
240.4
346.00
346.60
0.250
346.73
347.72
0.10
347.83
7
20
2.77
18 c
48.4
346.35
346.55
0.413
347.39
347.42
0.11
347.53
9
21
CB 12
0.34
18 c
23.0
346.68
346.78
0.435
348.21
348.21
0.00
348.21
10
22
CB 7
0.70
18 c
13.0
347.17
347.25
0.615
348.67
348.67
0.00
348.68
12
23
1.30
18 c
42.4
347.70
347.80
0.236
349.98*
349.99*
0.01
349.99
13
24
3.79
18 c
212.9
348.00
348.30
0.141
350.58*
350.85*
0.07
350.92
14
25
1.83
18 c
42.4
348.35
348.50
0.354
350.70*
350.71*
0.02
350.73
15
26
CB 27
0.72
18 c
23.0
347.20
347.30
0.435
347.72
347.73
0.05
347.78
18
27
CB 14
1.50
18 c
23.0
346.60
346.70
0.435
347.90
347.91
0.02
347.92
19
28
CB 9
1.08
18 c
13.0
346.55
346.65
0.769
347.61
347.61
0.01
347.62
20
29
CB 6
0.62
18 c
13.0
347.80
347.90
0.769
350.00*
350.00*
0.00
350.00
23
30
CB 3
3.17
18 c
23.0
348.30
348.35
0.217
350.95*
350.97*
0.05
351.02
24
31
CB 1
1.26
18 c
23.0
348.50
348.60
0.435
350.74*
350.74*
0.01
350.75
25
32
12.02
30 c
237.6
338.66
339.37
0.299
343.29*
343.50*
0.09
343.59
2
Project File: LINE49-REVISION.stm
Number of lines: 70
Run Date: 08-29-2006
NOTES: c = cir; e = ellip; b = box; Return period = 10 Yrs. ; *Surcharged (HGL above crown).
Hydraflow Storm Sewers 2005
Page 2
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
HGL
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
Junct
line
(cfs)
(in)
(ft)
(ft)
(ft)
N
(ft)
(ft)
(ft)
(ft)
No.
33
CB 11
1.40
18 c
13.0
346.68
346.78
0.769
348.20
348.20
0.01
348.21
10
34
CB 8
1.10
18 c
23.0
347.17
347.25
0.348
348.67
348.67
0.01
348.68
12
35
CB 28
0.19
18 c
13.0
347.20
347.28
0.615
347.77
347.77
0.00
347.77
18
36
CB 24
1.16
18 c
13.0
346.60
346.70
0.769
347.91
347.91
0.01
347.92
19
37
CB 10
1.69
18 c
23.0
346.55
346.65
0.435
347.59
347.59
0.03
347.63
20
38
CB 5
0.68
18 c
23.0
347.80
347.90
0.435
350.00*
350.00*
0.00
350.00
23
39
CB 4
0.62
18 c
13.0
348.30
348.35
0.385
350.99*
350.99*
0.00
351.00
24
40
CB 2
0.57
18 c
13.0
348.50
348.60
0.769
350.75*
350.75*
0.00
350.75
25
41
10.41
24 c
132.6
339.87
340.32
0.339
343.59*
343.87*
0.03
343.90
32
42
10.41
24 c
113.1
340.32
340.78
0.407
343.90*
344.14*
0.17
344.31
41
43
7.86
18 c
286.2
341.28
342.00
0.252
344.31*
345.91*
0.24
346.15
42
44
7.86
18 c
41.9
342.00
342.10
0.239
346.15*
346.39*
0.22
346.61
43
45
7.86
18 c
562.5
342.10
343.51
0.251
346.61 *
349.76*
0.05
349.81
44
46
7.86
18 c
52.4
343.51
343.64
0.248
349.81 *
350.10*
0.31
350.41
45
47
7.86
18 c
280.2
343.64
344.34
0.250
350.41*
351.98*
0.31
352.29
46
48
3.53
18 c
112.4
344.34
344.62
0.249
352.53*
352.66*
0.06
352.72
47
49
CB 17
1.80
18 c
13.0
344.62
344.65
0.231
352.77*
352.77*
0.02
352.79
48
50
0.98
18 c
48.4
346.60
346.80
0.413
347.91
347.92
0.01
347.92
19
51
1.61
18 c
38.4
343.50
343.60
0.260
343.98
344.18
0.10
344.28
32
52
2.55
18 c
125.8
343.50
344.00
0.398
344.45
344.65
0.19
344.84
42
53
1.38
18 c
42.4
346.80
346.90
0.236
352.58*
352.59*
0.01
352.60
47
54
CB 18
1.73
18 c
23.0
348.90
349.00
0.435
352.77*
352.77*
0.01
352.79
48
55
CB 25
1.61
18 c
13.0
343.60
343.65
0.385
344.30
344.30
0.07
344.38
51
56
CB 21
1.25
18 c
13.0
344.00
344.10
0.769
345.00
345.00
0.02
345.02
52
57
CB 16
0.61
18 c
13.0
346.90
346.95
0.385
352.61 *
352.61*
0.00
352.61
53
58
2.95
18 c
52.4
346.90
347.10
0.382
352.55*
352.59*
0.04
352.64
47
59
0.98
18 c
42.4
346.80
346.90
0.236
347.92
347.93
0.01
347.94
50
60
CB 22
1.30
18 c
23.0
344.00
344.10
0.435
345.00
345.00
0.02
345.02
52
61
CB 15
0.77
18 c
23.0
346.90
346.95
0.217
352.61*
352.61*
0.00
352.61
53
62
CB 19
0.97
18 c
13.0
347.10
347.15
0.385
352.67*
352.67*
0.00
352.68
58
63
CB 23
0.98
18 c
13.0
346.90
347.00
0.769
347.94
347.94
0.01
347.95
59
64
CB 20
1.98
18 c
23.0
347.10
347.15
0.217
352.66*
352.67*
0.02
352.69
58
Project File: LINE49-REVISION.stm
Number of lines: 70
Run Date: 08-29-2006
NOTES: c = cir; e = ellip; b = box; Return period = 10 Yrs. ; *Surcharged (HGL above crown).
HydraFlow Storm Sewers 2005
Storm Sewer Summary Report
Page
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
HGL
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
Junct
line
(cfs)
(in)
(ft)
(ft)
(ft)
M
(ft)
(ft)
(ft)
(ft)
No.
65
2.63
18 c
217.8
345.65
346.15
0.230
346.93
347.09
0.08
347.17
8
66
1.39
18 c
45.0
346.15
346.30
0.333
347.22
347.22
0.02
347.25
65
67
CB 13
1.39
18 c
16.3
347.00
347.05
0.308
347.45
347.55
0.11
347.66
66
68
1.24
18 c
53.4
346.15
346.45
0.562
347.21
347.21
0.03
347.24
65
69
CB 32
0.29
18 c
15.0
346.45
346.50
0.333
347.26
347.26
0.00
347.26
68
70
CB 31
0.95
18 c
25.0
346.45
346.50
0.200
347.24
347.25
0.02
347.27
68
Project File: LINE49-REVISION.stm
Number of lines: 70
Run Date: 08-29-2006
NOTES: c = cir; e = ellip; b = box; Return period = 10 Yrs. ; *Surcharged (HGL above crown).
myoranow storm sewers zuuo
Stantec
RAIH'�JAGE
FOR "(,`f4,,AGT ti�35"F
LL,
APPENDIX
Jul. 17, 06
4.10.2 Storm Sewer Inventory Report
STANTEC v:\projects\270054.00\drain\drainage reporLb-6557.doc 4.24
r
1
{
v
c
c
n
u
C
u
d i
C_ z
J (D 7
M N N N
fn m m lb 0)
U U U U N
00
0
W N U) M t` CC) O (D M "It 'd' (0 tl0 M W N N ti 0) t• co O
O E CD O -7 0� CC') N h 7 O 7 Un N O V: O (O M N h M M
C r N N - M u) (n (D � et "t 'cl' 'd' cD LO M i 't d' V' co
v M M M M M M M M M M M M M M m m M M M M M
N .-+ O O O O O O O O O O O O O O O O O O O O O
0 !L (n o 0 0 o O O O o 0 C. 0 o O o O Co o O o0— 0
CVM M M Cl) Mm Cl) Cl) Cl) M M M Cl) Mm co Cl) Mm M M
7— - r r a- r- r r r c- - r
Z 6's O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O Cl O Co O O O O O O O O
O
I -
0)
m c N
a
w U U U o U C) U U U U o U CU . U 2U U U U U U U
0
a
A C N C E
co (D (D O O (D O o It It 'd' M co W co co 00 00 00 co =3
co M M M. M M M N N N - - - - - - - `-' - Z
'C Q O (0 t` O Cl) t-* LO CC) U) co LO � It O CC) to to O O Cn 00
r r N CC) C() f` 14: (D M 7 (n O O O M O N (D UA r-�
ti ti 00 N co C) M 4 Cco CD ti CO co N N t-- CO (D (0
M Cl) M M �t V' 'IT 'd' It IT 'd'
M M M M M M M M M M M M M M M M M M M M M
CD (D 'qY LO CI) to CO U) 'ct CD to O U) 00 M M
C O o
OR N N N N N N N N N N N N N N M (D M
J (A V O O O O Ca O O C7 O O CD O O O O Co Ca O Ca O O
t: Cm O (D O 00 Cl) h U') C17 Cn W CC) t.- � O O O O O CC) 00
® r,.� 7 7 r: V: CC) r-� W O M 7 U7 r (D O O O O O M (D
(D n 00 CA CD N M �F Cfl CD M r t` co N N t` to M O
C W M M M M co M M M M M M M M M M M M M M M M
O O O O O O O O O O O O O O O O O O O O O
C£ •� O O O O O O O O O O O O O O O Co O CD O O O
OO O O O O O O O O O O O O O O O O O O O O
C® U O Cl O O O O O O O O O O O O O O O O O O O
V O O O O O O O O O O O O O O O O O O CD O O
® R^ O Cl O O O O O O O O O O O O O O O O O O O
U. ` Lo (a O O O O O O O O O O O O O O O O O O O O O
Cl R O O O O O O O O O O Cl O O O O O 'Cj Cl O O O
G
3C) 0 0 C. 0 0 0 0 0 o O Co o O r tet' 0 0 0 �
00 C'I (D O O O O O O O O O O O O O O V' O O' O O M
Y v C; O O Ca O O Ca O O O O O O O O N 6 Cj O Ca O
V C D
7 Q _ _ _ _ _ _ > _ _ = O
m
d
^ O O O C?
E d c d N O O O O O Q O O O � O O O O O Ca N
C ® R O O (A O O O T O O CA O O O m CA CA O O O O
to
+L+ r CR N r OCD O O CD N T >
d O 00 U) r O O U) U) d' M Ct) M M O � O 'd: O W
M N N O t` r 00 M t M M r- ti (D M N ',r W M
.J
.2— 1 N V rh It d' N N N N Cn N N CA
t
W
Z
'0 J
C C ® Cn 1^ r N Cl)Cn (D t
d' ` 00 O - O r - r r d' V' 'O O
W - N
® Z
IL
U
d0)
t-- co 0) N N E
co
.1 Z
V
d
M
d
CD
f
(
fU
C
J
�
f�
N
O
O
Cl)
r
co
co
N
Or
LO
�
N
O
O
N
m
MCDCOCCIMM
m
m
m
m
m
m
m
m
U
U
U
U
U
U
U
00000000
N
o0
O
W
In
0
(0
0
Nt
to
M
N
M
o0
O
to
(D
'd'
U>
w
N
M
u)
C0
m E
W
M
CO
It
(O
It
M
u7
W
N
M
'V'
O
M
M
'ct
N
'V'
V
(f)
u�
M
ti
M
o0
M
o0
N
M
V
M
co
ti
M
N
d'
ll�
u)
M
NT
O
to
..b.
(i1
c
m
LO
o
0
u)
(n
(n
u7
u')
to
to
(n
(n
to
(n
0
(n
(n
u)
(n
(n
0
M
M
M
M
co
M
M
M
M
M
M
M
M
M
co
M
M
M
M
M
co
(nU ^
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
u)
O
Y
o
O
o
0
C.
0
0
0
o
O
o
o
O
o
o
Cl
o
O
o
r
O
r
r
r
r
O
r
r
r
r
r
r
a)r
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
7
Z l8
O
r
O
O
r
O
O
r
O
r
O
r
O
r
O
r
O
r
O
O
O
O
O
r
O
O
O
O
O
r
O
>
O
O
O
O
O
O
O
O
O
O
O
O
Cl
O
O
O
O
O
O
O
O
O
ti
C.
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
O
l0
V
�
T
(D N C
E
i
JN tr.
c0
o0
o0
c0
o0
W
o0
O
o0
o0
Cl
W
M
M
M
c0
o0
co
c0
'ct
V'
3
Z
G,
r
r
r
r
r
r
r
r
r
r
M
r
r
r
r
r
r
r
r
N
N
m
(U)
O
O
O
O
O'
u7
O
u)
O
r-
o0
u)
o0
O
u)
O
to
O
N
o0
a) a
N
W
M
un
M
h
O
M
MM
M
h
N
N
r*-:
O
O
M
O
M
�
r•
ti
o0
oo
t-
(0
(0
rl-
oo
co
0)
co
ti
t-
(0
co
I-
co
co
0
0
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
d
C
N
rl'
d"
0
M
M
h
fl-
N
M
O
II-
(()
N
1--
M
M
o0
r-
7
V;
2—
(0
N
r
M
V
NI:
h
h
N
V
M
rl
M
(O
ti
?
V;
Mr
-
M
J N `'�
O
O
'0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O.
O
'C C
r-_
O
O
u7
O
O
(f)
O
O
O
(0
o0
h
O
O
u7
O
O
O
h
N
®
r
ti
O
M
N
O
v(
W
M
uJ
(O
(D
r
N
(0
u7
W
M
(()
M
M
ti
r
co
oo
n
c0
(o
I-
co
co
co
(o
r-
ti
(o
(o
h
oo
oo
0)
O
M
It
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
� W C
C •�
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Cl
O
O
O
O
Cl
O
O
O
O
O
O
O
o�^
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
W
0 V
3 0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
®
CD (® ^
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
6L
` d R
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Cl
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C
3
CI w
O
O
O
O
N
O
c0
N
t'-
(0
O
O
O
0)
(O
0)
O
o0
O
N
(0
�
((7
O
O
O
O
O
ti
O
O
O
O
O
O
O
h
O
U)
r
O
r
co
O
r
M
N
r
O
O
V
r
r
r
r
O
r
r
r
O
O
O
O
O
n
a
a
.n
.n
n
n
a
n
a
s
fl
a
n
�CL
U
�w
y
O
o
0
0
0
0
0
0
0
C)
O
o
o
0
0
0
(D
0
o
N
E
0
M
0
M
0
M
0
M
0
M
0
0
�,
0
�,
0)
o
0
M
Cl
M
0
0)
0
M
o
o
Cl
M
Cl
M
0
0
�
Clc
ca'�
�
�
�
M
�
�
M
M
�
M
M
�
M
M
�
0
0
0
Q
tU ^
O
'd'
N
O
O
O
O
O
O
O
O
O
O
N
M
W
C C'
cv)
N
r
N
M
M
M
M
M
c+i
M
M
M
cM
('M
M
M
M
ch
M
r
w
J "
r
N
'd'
N
N
r
r
N
N
N
r
N
r
r
N
N
r
r
r-
r
d)
�t
W
Z
C
N
r
�
o0
0)
O
M
'ct
u)
O
N
c0
M
O
M
d'
LO
N
r
'
r
ems-
N
N
N
N
N
r
r
r
r
N
N
N
N
M
LL
U
N
0
(D
h
00
O
O
r
N
M
`a'
((>
(0
r
W
M
O
r
N
O
04
N
N
04
N
N
04
N
M
M
M
M
M
M
M
M
M
M
V
V'
d'
tl
J
Z
M
tU
C
J
(D
N
N
O
N
N
O
(V
m
m
m
m
m
m
m
m
m
U
U
U
U
U
U
U
U
U
N
0
0
a W
N
(0
U)
00
n
Cl)
n
'V'
M
(o
M
't
n
n
r
O
0
(D
M
V
n
V
n
O
tD
d00
E
n00
7
O
(D
N
(O
V
'ct
00
Cl)
M
00
't
Cl)
N
7
V'
?
M
M
N
M
' T
C
N
M
M
It
(C
C •�-� `''
U)
to
to
U)
U)
to
U7
0
U)
U)
U)
to
U)
Uy
to
U)
U7
to
M
U)
M
0
M
LO
M
M
Cl)
M
M
M
Cl)
Cl)
M
M
Cl)
M
M
M
M
M
M
co
y .-+
00
N
U)
O
Cl
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O 0) Y
n
n
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
—
c-
i-
—
c-
e-
—
a--
—
e-
—
—
—
N
M
M
M
Cl)
M
M
M
M
co
M
Cl)
Cl)
Cl)
(Y)
co
M
M
M
Cl)
M
Z v
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
>
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O.
O
O
O
O
O
n
y
w
®
c a
J w
U
U
U
CU
CU
U
CU
CU
U
U
U
U
U
U
U
CU
U
U
U
U
U
0
v
�
>+
C N C=3
E
0
co
co
co
0o
0o
co
co
00
00
co
co
0o
0o
0o
co
co
co
—
co
c-
co
.-—
co
Z
a
•--
a-
—
a-
c-
c-—
—
�-
—
—
.--
—
—
c-
a-—
CL
O
O
'It
'It
N,
to
O
O
O
O
O
O
O
U)
0
Cl
to
CA
O
r
O
O
_O
to
O)
U.
O
O
C a
O
N
r
CV
to
M
(o
fM
M
V'
(D
0
c0
co
(D
M
O
-T
-
M
M
M
ti
(O
I11
M
M
M
M.
M
M
M
M
M
M
M
M
M
co
M
M
M
Cl)
M
Cl)
M
0) D.^
Lo
d'
to
U7
U)
LO
M
(o
O
d'
M
W
n
nM
CO
00
M
V'
N
M
�t
N
N
00
M
n
n
J N
O
O
O
CD
O
O
O
O
O
O
O
V;
O
M
o
O
O
O
O
O
O
O
o
C
co
O
O
�--'
c'
7
N
O
O
O
O
O
O)
O
(D
O
O
O
M
O
M
O
00
O
Cl
O
M
O
�-
O
o)
y ®
N
O
r-
U)
(D
M
(D
(O
U�
Uq
c0
f�
(�
C W
M
M
M
M
M
M
Cl)
Cl)
M
Cl)
M
M
M
M
M
Cl)
Cl)
M
M
M
M
O C
•£
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
co
O
O
O
O
O
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OOO
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C o V
V
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
®
cn lC ^
O
O
O
O
O
O
O
O
O
Cl
O
O
O
O
O
O
O
O
O
O
O
Lia
``
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
® R...
O
O
O
O
O
O
O
Cl
O
O
O
O
O
O
O
O
O
O
O
O
O
C
N
O,
O
O
O
O
O
O
O
O
O
O
M
r
0
—
Cl
OO
n
n
0 -
O CAI w
O
O
O
O
O
O
CO
O
O
O
O
(�
CD
N
CD
O
O
M
n
o)
o)
Y.Vr
O
O
O
O
O
O
i-
O
OCD
O
r
O
O
O
r
O
O
O
v y
o
.n
-2
a
a
n
O.
2
2
=
2
2
2
=
2
S
2
2
=3
5
m
2
2
:3
>
>
=
E
O
_
q
•-
O
O
o
0
0
0
0
O
0
0
0
0
0
O
O
O
y
E
ami �w
d
O
O
O
O
O
O
O
CA
0)
O
O
O
O
O
O
C
® (®
O
't
It
O
CP
O
0)
O
0)
m
o)
6)
9)
T
9
T
O)
O
O
Q
Q
y p)^
N
o)
O
�
N
�'
O
d'
,�
O
O
O
O
'V
�t
O
Cl
O
O
w
C C
000
1:
(ND
N
w
r
M
00
00
N
N
(M
M
M
M
N
N
M
M
M
('M -
J
N
It
LO
U)
N
—
r
—
0
V
N
N
0)
W
Z_
CC
N
C C
'd'
'd'
'et
V'
�'
V'
r
M
to
to
to
't
to
U)
U7
O
U)
® Z
!1.
U
0)
O
C O
M
d'
'a'
U0
(D
n
co
O
O
N
M
0
d'
to
to
to
(o
U)
n
to
00
U)
O
to
O
co
(D
N
Co
M
CD
O
J Z
et
et
[t
�t
�Y'
0
t[)
U7
d
Z,
u
c
c
e
a
u
f
r
u
t
4)
i
C
i
J
cp 7
M
O
N
M
N
m
m
m
m
0)
U
U
U
U
N
0o
0
e� w
r
(I0
tLq
M
N
OMR
OMo
"J
d
E
C v
ri
tri
u7
to
to
v
Urca
M
M
M
M
M
M
M
N
.-.
O
O
O
O
O
O
O
0
o �Y
o
0
0
0
0
0
0
N
Cl)
M
Cl)
Cl)
M
M
M
Z R v
O
O
O
O
O
O
O
>
O
O
O
O
O
O
O
O
n
(D N
`
N
O
o
v
a)
m
N C
E
=3
J .O �.
co
co
co
c0
co
co
co
Z
'4) Q
LO
LO
M
O
=_
rt"
to
V)
7
C W ...
M
M.
M
M
M
M
M
d
C
M
V)
M
N
O o
N
N
M
J N v
O
O
O
O
O
O
O
'C C_
C)
to
O
LO
to
LO
f0
LO
®
N
M
c0
h
(D
c0
O
O W ....
M
M
M
M
M
'IT
(`�R
0 C
C £'E
O
O
O
O
O
O
O
. w v
O
O
O
O
O
O
O
C o
O
O
O
O
O
O
O
v
O
O
O
O
O
O
O
O
3
IM�^
o
0
0
0
0
0
0
0
0
0
0
0
0
c
OClw
co
OOO
M
N
m
C
Y
�
O
O
O
O
O
V
CL
a
7
(D
d ,-.
0
0
0
E
E
0
0
0
0
0
0
0
Z
0
—
Q
cn
w
N
N
"�
-
—
10
N
w
Z_
a.
= C O
co
00
CD
c00
(D
(D(MO
coO
LL
U
0)
O
co
(
O
J Z
j
(0
(O
(0
c0
c0
h
d
APPENDIX
Jul. 17, 06
4.10.3 Hydraulic Grade Line (HGL) Computation Procedure
STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc
4.25
8 A FJ"','
APPENDIX
Jul. 17, 06
4.10.3 Hydraulic Grade Line (HGL) Computation Procedure
STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc
4.25
r
U
C
,a
m
o
O
Vj
U
N
'C
C
CO
N
O. m
O 3 a)
N
b
Cto
UW -
a) 2
3
n
co
30 a-
X
r
�
m
J
C
U
y c:
C_
a)
E
v
'
(V
d
m
J
2)•—
V
U
C
=
3
C)
O U j
O
C
-jC
O
cog
'p
_..,.
C to
Q
)
Wcu
� C C
L
3
C
N
c
omE2D
'O U
O
0
m
a)
]
W
{
N >+ C
3 p
+
C
N
o
to
jj
rn
t� a)
`
3
ca)E
C a) +L 3
O
=
C
O
C
�
cU
N (6
m
c
E
.L.+
E
7 D E
Qw ()O
a)
0
x
O
N
0)J
E E
2
E
to
c
O
M
y CA C)
m
n.
o�_
2
ED
c
U
+
U
c 2 ? c
m
ami
�_
'
UCL
ca
E m o
0
0
N
C
O
h
c o.`
a
a)
in
to
3
0 y E:o
E
C
N
'O
@ � -
a
m
m
o.
c
ami
(D acr ) - aa)
N
a)
3
m
rn
cu
C
E o.
w
N
o
C
a)ch
('04
Ea)
C
CL
omc�o
o
ro
8
.n
Y
+
=0=CU
6x
o
co
m
',.
o = .0 c
c
�
3
v
0
o
C
O
�.
CO � 'L7 a)
C
C
N
ZQ
3
=
o
U
U
O
a)
N
NX
w n o
'�
c
a)
O
M
U
E
®
rn 3
c m 3 m
-i
m
.c
c
a)
o
E
>
c
c
M
m
_'I
J O. N
N
N
Q
E
U
c
o
M,
o, m
o
w
w
c
C7
2
ca
N
o
v
'U
S
y
N
N
O
t`0
o c
UN
n
3
C
O
N a;
d N
3
2
t
U
a
`
m
>.
a)
w
O
O
E
m
a)
a)
cu
a)
(6
a)
U)
D. N
m
U
U
0)
>
w
76
G
.L-+
N
w
N
,.
E U 3
o'oca
F-
U
F-
c
C
N
iv
C
3
N
m
v
12
o
5
o
W
v
c
3
N
N
3v m
m
U
U
(
m
m
m y o c
E
o
m
rn
a)
3
rn
m
c
o
w
Tc N
m
L
o
3
aci
a)
L
N
'O
N
O
O
w
e
O
N
j
Q
NE2CO
0
CO
O
V
c
y
3
>
c
c
o
o
L
a)
IL
C
C
�
@
>
'a
O
.0
i.
O
FL-
N
H
0
F-
a)
h
W
N
FL-
p
U
c
FL-
O
a)
L
~
'—
t9
v
U
U
U
c0
c0
c0
U
U
U
r
U
F
rn
N
(D
C
a)
H
N
U
a)
c
cu
b
w
CL
3
a)
O
c
O
N
N
m
H
r
0
0
U
U
C
m
N•
O
Vj
N
+
C
N
N
b
Cto
3
n
co
O
X
r
�
J
C
U
W
v
E
c-
m
J
U
n
=
3
C)
C
-jC
cog
'p
U
a)
Wcu
L
3
N
c
0
m
c
]
W
+
C
to
3
=
C
O
�
cU
m
c
E
a)
0
x
O
C7
o
2
E
m
c
M
m
n.
o�_
E
O
U
N
m
UCL
0
0
N
E
U
a
a)
in
to
3
m
o.
c
N
3
cu
C
N
Go)
C
a)ch
('04
Ea)
C
CL
Y
6x
o
co
m
3
v
0
C
O
o
13
O
3
o
U
U
O
a)
N
NX
U
O
M
O
N
co
a)
(�6
`a)
0
N
a)
a)
w
°
Q
w
0
v
c
o
o
U
0
a)
'U
S
N
N
O
t`0
O
UN
>
C
O
'U
>.
>
a)
O
a)
a)
4=
a)
(6
a)
o
o
c
F-
i
F-
F-
F-
W
F-
1-
0)
N
W
N
N
N
N
U
U
U
UUUU
U
1)F1 'd,, f,,! A G F
APPENDIX
Jul. 17, 06
4.10.4 Hydraulic Grade Line Computations
STANTEC v:\projects\270054.00\drain\drainage reporUr6557.doc 4.26
u
O U)
(D
N
t*-
t-
(D
CO
C9
M
O
(D
CD
V'
(D
N
M
O
m
O
r
O
C N
N
O
r
r
r
r
N
N
M
N
N
r
r
N
r
O
O
O
O
r
r
O
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
o
O
J N
`7
M
I(Oj
O
O
o
O
O
O
O
O
O
O
o
O
o
O
O
O
O
O
i
O
V
N
O
_
r
_
_
_
_
r
r
r
_
r
_
_
r
rO
r
r
CD
O
u
co
'd'
M
M
00
T
U)
Cl)
co
CD
N
U)
(D
Cl)
VT
O
U)
M
M
O
i
N
U)
In
�
CO
IT
M
Cl)
'It
O
(D
V
O
U7
O
O
O
r
(D
O
C(n
v
O
O
O
O
M
U)
M
CD
M
M
N
O
U7
O
O
O
N
fA
O
O
N
X
V
W O "
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
00
O
N
L
M
r
<t
O
r
t`
O
(A
(D
(A
d•
CD
O
M
r
00
(D
r
N
N
(A
N
N
r
U)
M
M
O
0 CD
M
U)
(D
O
(A
M
M
O
d
fn o
v
O
O
r
r
O
r
N
r
N
r
r
N
O
O
O
M
M
r
O
cu
Q'
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
❑
M
r
ct
O
M
to)
(D
't
(D
O
M
C'
r
LO
O
C
cr
y..,
N c
v
(D
O
(D
O
NN
r
r
CO
O
V'
r
(D
r
It
N
zt
r
U)
N7
d•
M
r
M
'IT
00
N
M
O
U)
O
O
O
Cl)
M
r
Ir
r
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
00
O
O
r
(D
h
N
V
N
(D
',*
'�?
CO
CA
O
O
co
m
Cl)
M
r
('J'j .y
W
7-M
r
N
Cl)
'�t
co
h
M.
N
O
ct
(D
U)
O
(D
M
f-
(P
I`
M
W
(n
00
t`
O
Int
O
ti
O
00
M
M
M
(D
00
P--
U)
h
N
co
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
((9
Op
M
N
I-
t-
(D
U)
(O
M
O
(D
(D
':
V
(D
N
M
O
O
O
r
O
r
r
r
r
r
r
N
N
M
N
N7
r
N
r
O
O
O
O
r
r
O
' s
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
N
N
O
O
N
W
CD
O
r
N
N
M
-,t
(D
(D
M
(o
O
O
00
co
Cl)
M
r
O
r
U)
U)
r
r
O
CA
r
O
M
M
V '
U)
CD
N
C
v
NCV
M(`7M
Cf1
O
N
CV
N
O
O
O
Nm
42)
U`
t`
Cl)
W
M
04
O
�
�
CL
N
O
O
It
OMD
I
ti
U
ti
I-
h
h
r
ti
It
B y
C4
r
r
1--:
t-�
O
d•
'i
M
M
CV
N
N
r
r
6
r
r
E
7
Z
L
O
O
O
O
00
(D
O
(D
tiV'
M
O
O
O
O
O
CF)
N
fl-
M
y cam-
O O O O U) 0) CA (D I-- 07 CD i` U) U) U) U) U) Cl) 00
O
O
r
J
(0
tt
N
't
M
U')
N
O
O
O
r
M
00
M
W
CA
N
N
r
.-.
.�
O
r
M
In
r
h
M
M
r
r
r
'd:
U)
M
O
00
OR
U)
r-�
V.
CV
_
Cl)
M
M
Cl)
V
�r
CO
O
ti
ti
00
00
O
O
O
Cl)
Cl)
h
n
t-
W
M
M
M
M
M
M
to
M
M
M
M
M
M
M
M
M
M
Cl)
M
M
Cl)
COY)
O
O
1-
O
M
r-
U)
U)
U)
00
to
ti
't
O
U)
U)
U)
O
O
LO
W
>04
r
r
N
In
U)
h
V•
co
Cl)
r
to
(D
O
O
M
O7
N
O
U)
h
2�
c'
ti
Ih
W
6
N
(j
q
L6
CO
CO
CO
1
00
0o
Cl
N
1-
CO
CO
(O
N `''
Cl)
M
Cl)
Cl)
It
Int
It
V•
It
V
It
Vt
'd'
V
V
Int
It
�t
M
M
Cl)
M
M
Cl)
M
co
M
M
M
M
M
M
Cl)
M
M
Cl)
M
Cl)
M
N
(A
�
N
J
C,
N
N
0)
h
W
000
M
Vq
00
M
�
(D
Ch
N
1
00
Ict
C7
N
et
eP'
'�t
N
N
N
r
r
d•
N
r
r
N
U)
N
N
U)
r
�t
W
W
M
T
O
N
N
r
v-
(0
C9
N
N
m
n
CF)
O
O
(D
N
M
f`
00
M
U7
O
U)
Cl)
O
O
O
O
r
r
O
O
O
N
O
N
r
r
M
N
O
O
O
IO
r
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
(D
U)
Cl)
O
00
Cl)
O
OO
d'
W
O
O
U)
W
M
M
r
(O
J
r
N
�t
(O
M
C'
N
-O
CA
r
'ct
OR
O
O
00
W
<t
O
d:
N
N
M
Cl)
Cl)
M
Cl)
d'
Cn
O
CD
ti
00
00
OO
CA
O
M
M
t-
ti
�
00
WW
;r
et
d'
-t
't
't
at
V
et
V
"t
q
'•
d•
U)
I�t
It
'IT
d'
'i
It
Cl)
Cl)
Cl)
Cl)
M
M
M
M
Cl)
M
M
M
Cl)
Cl)
Cl)
Cl)
Cl)
M
M
M
Cl)
Cl)
N
h
h
00
M
�
M
M
W
(D
N
M
O
N
00
h
O
r
r
r
r
r
r
r
N
r
N
r
r
N
r
O
O
O
r
N
O
O
9
O
O
O
CD
O
O
O
O
O
O
O
O
O
o
O
O
O
O
ti
N
N
N
O
(6
n
O
CD
O
�t
00
OD
It
(D
M
M
00
N
CA
00
00
M
M
M
00
M
N
00
r
CC)
O)
O
r
O
M
M
t`
N
r
r
O
N
N
co
M
N
N
M
It
N
N
N
IT
M
r
C)
N
IT
N
C.
d
10O
0O
1
t-
n
h
N
O
N
(D
N
h
O
I-
fl -
ti
t`
M
11)
M
N
QN
N
N
O
O
O
O
CA
h
U)
U)
U)
O
OA
r-:1`
ti
h
I,-:
MOR
f`
O
®
La
Q'
O
O
O
O
O
t`
Cl)
h
O
O
Cl)
CA
r-
O
O
O
O
CD
M
d•
O
O
(�
O
O
O
O
O
f`
Cl)
t-
N
V:
00
ti
M
U)
U)
to
to
M
r-
O
U)
O
4
M
M
M
N
N
r
N
r
r
r
r
r
r
r
O
O
r
N
co
W
U)
O
O
N
U)
'tr
d'
et
M
co
I()
00
(D
M
W
JM
i
O
N
V
N:
M
r
t-:
Cb
M
O
M
U)
OR
(D
Cb
M
M
1`
M
N
d
M
M
Cl)
M
M
't
to
O
CO
ti'
co
00
co�
O
M
m
Ih
(D
r—
00
E
Z (D `-'
V
ct
It
rt
It
It
It
It
et
It
V•
It
It
d•
U)
It
It
It
It
"It
It
M
M
M
M
M
M
M
M
M
M
co
M
M
co
Cl)
M
M
M
M
M
Cl)
N
.�
U)
O
CD
O
co
M
tl-
U)
U)
U)
co
LO
t�
It
O
O
O
O
O
U)
co
O
Z
Q
a
(D
E
j
ti
(O
r
r
r
00
'�
W
ON
tt)
t�
CA
M
CD
q
00
U)
r
CO
U)
Co
r
t`
O
1.-
O
00
O
N
O
(V
O
r
O
(O
M
CO
(O
Iq
>
(n
C (D"'
Cl)
Mm
M
't'cI'
It
V
It
d•
It
V'
'7
V'
It
�F
'tet
It
V'
M
Cl)
N
®
Cl)
M
M
M
M
Cl)
M
Cl)
M
M
M
M
M
M
M
M
M
Cl)
M
w
fd
O
It
co
It
coO
It
'�
COO
U')
000
N
�
N
N
N
N
M
It
d•
ti
'�
L
(U
t`
O
O
OO
d•
(D
W
CD
n
Cl)
W
.o
V
CO
M
U)
Cl)
CM
N
M
N
O
N
CA
(A
U)
r
�
O
r
00.
M
CD
LO
<-
N
O
O
CY)
N
O
Z
r
J
N
c
v
ao
00
m
m
cD
to
m
O
O
v
00
LL
U
@5
'et
V'
Cl)
Cl)
M
Cl)
M
Cl)
M
N
N
N
N
N
—
r
—
—
r
—
r
—
r
r
—
r
—
—
<'
x
N
N
C
v
O
r
N
M
d'
U)
O
t-
W
M
O
r
d
O
Z
J
r
N
M
CO
M
ti
00
o)
r
r
r
r
r
r
r
r
r
r
04
N
VT
O 0
C
N
O
O
O
n
O
N
O
to
O
N
O
r
O
O
O
U)
O
O
M
O
r
O
O
O
O
O
M
O
O
O
O
O
O
O
M
O
n
r
c
o
n 0
O
C)
O
O
C)
O
O
C)
O
C)
O
O
C)
O
o
O
O
O
o
O
O
i
F
U
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
U)
O
Y
v
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
r
CD
G
r
r
r
r
r
r
r
r
r
O
r
O
(�
r
r
r
r
r
r
r
r
r
O
r
h
n
M
m
to
N
O
O
O
O
N
N
O
O
n
N
O
O
O
N
O
O
O
O
O
O
O
O
O
O
W
'�t'
Q)
i
C Q
O
O
N
O
O
O
O
O
C)
O
N
O
O
O
O
O
O
O
N
N
N
tY.1
W
.N.i
O
O
o
O
O
O
O
O
O
O
o
O
O
o
O
O
o
O
O
O
o
00
d
d'
to
O
O
h
O
h
Cl)
r
tt'
(D
n
O
to
N
M
M
N
N
.0
41)
r
O
O
O
O
O
"It
a
O
O
O
N
"
Q
N
O
O
O
O
O
O
O
O
N
f6
O
O
O
O
O
O
O
Cl
O
O
O
O
O
O
O
O
O
O
O
o
O
et
U)
O
Co
to
r
M
M
(D
Cl)
O
'T
M
co
N
N
C
N
O
Cl)
M
V
N
r
O
OO
O
O
O
00
O
OO
O
O
O
O
U)
O
O
O
O
O
(D
O
rof
N
N
o
...
`-'
O
O
O
O
r
O
O
O
O
O
O
O
O
O
O
O
C)
o
O
O
O
o
O
O
O
O
J
co
O
N
M
00
N
N
O
N
U)
O
to
CO
n
N
M
O
O
U')
h
V'
O
M
CO
O
D)
n
h
O
CD
O
O
1,�
"t
't'd'
W—y
v
00
O
a'
O
V)
O
to
h
�
h
14-
h
' t
OO
LO
to
to
M
d'
00
'ct
M
7
n
V
h
h
'd'
O
to
tw7
O
U)
It
V
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
co
M
co
M
M
M
(D
U)
r
m
r
O
r
M
O
O
O
h
n
OOO
O
r
r
L
O
O
O
O
O
O
o
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
n
N
ti
O
'cl'd'
r
00
O
to
O
LO
r
V'
00
(D
U)
co*
U)
N
r
v
tt
n
r
O
r-
M
M
M
n
n
�t
0o
CD
M
n
d:
M
M
M
M
M
C
o
o
N
O
O
o
o
N
o
o
O
o
r
o
0
o
C.,
M
O
N
�
r
ti
r
r
ti
ti
ti
'N7,
t( j
N
ti
�
�
�
�
Uf
�
,OpC
Q N
O
r
r
d'
r
r
O
r
r
r
M
M
C
7
L
Z
CL
In
N
'd:
O
O
OM
r
(D
O
to
O
U)
O
to
O
to
N
'V:
N
V:
M
'ct
N
t
CA
O
U)
O
to
O
ll)
O
O
O
O
y r
®
U) UO U) d' N M
r r r r O r O r r (V r r O r O r CV N
Jh
O
U)
M '
r
r
O
h
O
O
h
n
CA
O0)
LO
h
d -
(D
m
cq
h
O
CD
O
O
n
UO
N
(D
h
U7
O
O
h
00
_ 2
00
O
O
O
n
n
h
O
O
O
M
o0
00
n
h
h
O
O
O
M
d'
'cY
't
qlT
U)
U7
'7
'It
�t
U)
to
LO
It
'c-
'd'
V
V
It
to
LO
U')
It
Cl)
Cl)
Cl)
M
Cl)
M
Cl)
co
M
Cl)
M
M
M
M
M
Cl)
M
Cl)
Cl)
M
M
4)>
U')
O
O
O
O
O
CO
O
to
O
h
00
U')
00
O
n
V)
(D
O
to
M
O
(D
N
M
OD
t�
N
CO
M
U)
M
h
(D
(A
M
(D
M
ti
N
N
q
o
:
d
v
n
h
00
00
r-
(D
(0
1`
00
00
(A
(D
I-
h
Co
(D
'd'
rl-
'IT
00
't
OO
<1'
'T
O
'It
C a)
-�t
It
�t
It
It
IT
It
d'
It
IT
Cl)
'V'
It
'ct
It
M
M
Cl)
M
M
Cl)
M
Cl)
M
M
M
M
M
M
M
Cl)
M
M
Cl)
M
M
C
N
O
d'
M
d'
O
O
O
O
O
O
M
O
O
O
O
O
O
O
O
M
M
MN
r
N
4
M
M
M
M
M
M
M
M
c)
M
M
c)
M
M
M
M
r
,�
..
r
N
N
N
N
N
N
r
N
N
N
r
et
U)
O
O
00
O
to
Cl)
r
d'
(D
co
r
M
r
W
M
M
N
N
w
c
c=
r
O
O
O
M
r
M
O
(D
O
O
O
O
O
O
O
O
M
O
�-
O
r
O
O
O
r
O
(`M
O
O
O
O
O
O
O
r
N
N
`-'
o
O
O
O
O
O
O
O
O
o
o
O
o
O
O
o
O
O
O
o
O
00
M
U)
N
to
N
N
O
O
In
CD
O
n
N
N
O
O
to
(D
h
J'
O
(D
O
CD
t`
n
W
(D
A
O
h
M
N
O
h
O
(D
O
O
h
n
O
p .2r
00
O
o
O
h
h
h
C)
r
O
M
00
M
n
n
h
O
r
O
M
d'
W (D `®
�t
V
to
U)
'd'
'ct
'd'
U)
U)
U)
et
zr
t
't
V
It
N
U)
LO
VT
M
M
Cl)
Cl)
M
M
Cl)
Cl)
Cl)
M
M
M
M
Cl)
M
Cl)
Cl)
Cl)
M
Cl)
M
A
O
r
h
N
M
r
r
O
tO
O
O
O
O
r
O
r
O
O
O
O
M
O
O
O
O
O
O
O
h
r
h
r
L
O
O
O
O
O
O
O
O
O
o
O
O
O
O
O
O
O
O
O
o
O
o
O
O
O
O
O
O
O
O
V'
U)
't
N
r
U)
O
r
tO
O
N
r
O
00
U)
N
r
�N
M^
r}
n
r
O
M
(A
00
M
h
n
e1:
I�
CD
M
h
N
M
M
M
M
M
.
A
F
C)
o
CV
r
r
Co
0
o
r
C)
N
O
C)
0
0
C)
0
o
Cl)
CO
N
d $
h
n
n
n
LO
M
d'
n
n
n
r
h
n
N
d'
r
n
h
h
►. y
v
t`
h
h
to
(O
Cl)
t-
r-
�
O
ti
r-
(D
co
M
3
M
Cl)
O
®
w
rL
O
O
O
O
N
O
CD
O
O
O
O
O
O
n
r
d'
O
O
O
O
O
d a)
t()
tC)
to
to
U)
M
O
U)
U)
In
U)
U)
to
U)
M
O
to
U)
Uo
O
O
®
.r
O
r
r
r
r
N
r
O
r
r
r
N
CV
J
h
00
00
O
N
O
r
O
to
d'
O
O
h
CO
n'
h
r
OA
M
U)
O
O
W
O
LO
t`
O
U)
O
O
(D
O
to
h
n
O
CD
O
0A
h
N
N
00
0
o
Oh
ti
r`
O
0
o
Cl)
00
00
r
r
rl-
Co
o
O
M
M,
E
= d `✓
It
M
It
M
to
Cl)
LO
Cl)
�t
M
rt
Cl)
Iq
M
LO
Cl)
LO
co
u)
M
v
M
v
Cl)
v
M
et
M
-It
Cl)
v
M
to
M
to
Cl)
LO
Cl)
a
Cl)
v
Cl)
I-
O
O
to
OO
LOO
O
O
(D
00
h
O
O
to
O
O
O
n
N
0
N
y
>
v
r
r;
r
n
O
o
M
0o
N
r;
CD
(D
to
o
00
r-�
M
00
to
0o
O
0
co
m
r
r
N
r:
(D
o
U)
o
00
n
M
w
U)
o
CO
of
CO
o
>
E
'd'
et
'et'
tet'
V'
V'
V
M
I
'[Y
14,
1.41
'd'
�'
'�t
M
M
M
V'
M
U)
®
Mm
M
Cl)
M
M
M
M
M
M
M
M
co
M
M
Cl)
M
M
w
(0
O
O
W
Cl)
N
O
00
N
n
(O
O
O
O
O
(D
m
00
N
h
?
Nt
L_
d
V
h
M
n
oq
h
t()
O
CD
r
N
N
'V:
r
r
CD
CD
O
U)
O
O
LU
70
...
o
r
M
r
O
O
M
r
r
O
r
O
O
O
r
r
Z
J
N
c
VU
00
00
00
00
00
00
00
00
00
00
O
O0
00
00
00
O0
00
00
Opo
"
�
LL
U)
"
i
r
r
r
r
'r
r
r
r
M
r
r
r
r
N
N
6
«
CU
(U
C
(N
M
U)
CD
h
00
O
O
r
N
M
et
to
(D
n
OO
M
O
M
O
V'
r
d'
N
'd'
0-
Z
J
`-'
N
N
N
N
N
N
N
N
M
M
Cl)
Cl)
M
Cl)
Cl)
CO
Cl)
d
CL
O V)
C
V'
N
N
N
to
O
r
M
r
M
(D
O
N
O
O
T
r
O
O
O
O
O
O
O
O
O
O
O
O
®
04
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
00
N
U)
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
o
Y
v
n
tl-
T
O
o
O
o
0
0
0
o
O
O
o
O
o
O
O
O
O
O
L)
o
0
0
T
P
r
r
T
-
r
T
r
P
r
P
r
T
P
P
r
T
(D
o0
It
U)
N
't
O
I-
dt
ch
Cl)
O
t-
(D
00
d'
O
r
(!')
t-
r
O
N
N
O
M
U)
M
t`.
N
O
O
M
N
O
O
O
O
O
O
O
O
N
C O F
v
(D
N
r
N
U)
T
O
O
r
M
O
O
O
O
O
O
O
O
O
O
O
Y
V
W
r
O
M
O
T
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
co
O
d
.G
O
O
O
O
O
M
O
M
n
'd'
r
O
M
M
N
O
U)
M
t()
V
ttOn
r
O
O
M
N
O
N
O
O
O
O
O
O
O
O
"
ca
N
tC°()
ltDo
t(°o
O
Q'
O
O
O
O
O
O
O
Co
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
M
O
P
M
(D
1-
t-
N
M
O
M
T
to
M
C
O
�s- .�
(D
to
(D
to
(D
to
(D
to
(D
Uo
r
T
N
O
O
M
N
M
M
O
N
O
to
r
CO
O
O
O
O
O
Cl)
O
O
O
O
O
O
U) o
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
M
ti
'�t
M
N
M
1`
N
M
00
N
-q
00
O
(D
M
00
M
N
O
T
O
V
(D
It
(P
N
O
(D
00
O
U)
M
W N9
N
(fl
(D
(D
O
O
O
N
N
t�
N
N
f-
ct
N
�
N
4
(17
N
N
t--
tC)
CV
N
t-
�
M
M
M
M
M
M
M
M
M
M
M
Cl)
M
M
M
M
M
M
M
M
(DV)
T
M
M
M
CD
O
N
O
T
O
O
r
M
r
CD
T
O
h
O
N
O
O
O
'
O
r
O
N
O
O
O
O
O
r
O
_ `�
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
t`
N
0
to
to
U)
to
O
N
M
U)
O
W
w
�
M
U)
t`
(D
t-
d'
14:
U
c1'
tl
aD
C
M
O
c.
O
=
O
C
�
�
r
r
1-
ti
n
I-
�
ti
'ct
CMD.
�
ti
r
r
N
r
Q c
P
r
r
P
r
T
P
r
O
Cor
T
O
T
r
T
r
r
E
z
O
O
O
O
O
O
O
N
00
to
O
O
U')
(D
Co
M
O
0
O
1n
Cl)
O
O
M
O
U)
O
M
V'
M
(D v
LO (n to U) U) U) (n to CD to to
❑
r
T
r
r
O
O
r
O
O
T
T
O
r
O
,J
r
M
O
O
00*
(D
^
N
00
U)
M
(()
t-
t`
O
M
O
O
lD
MM
to
0)
O
O
r
(D
(D
'd'
M
(DM
_
U)
M
(O
t -:r
M
O
q
T
(D
N
t-
N
�
t`
M
4
N
N
'
U)
N
CV
h
t!)
CV
CV
f
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Cl)
M
V
O
O
T
It
t
N
CD
to
O
O
00
O
O
O
O
O
M
O
O
tC)
O
O
M
M
O
T
O
M
O
T
U)
M
M
P
O
O
N
M
r
O
T
to
(D
m
M
co
M
'd'
' 1
O
'V'
M
M
(D
h
-,TW
(D
CD
r
r
C O)
rY
'd
'�t
Vt
It
d'
M
M
'IT
Cl)
co
d'
Cl)
C
M
M
M
M
M
M
M
M
M
—
M
M
Cl)
M
M
M
Cl)
C
N
CD
0)
M
O
N
O
eY
M
V'
O
O
O
O
O
O
O
O
J
03
(D
N
00
r
Cl)
00
00
N
N
CO
(h
Cl)
M
N
N
M
M
Ch
Cl)
N
It
U)
U)
N
T
"T
M
V'
N
r
r
r
U)
It
N
N
T
O
O
O
O
O
M
M
CO
N
N
ti
�
M
M
M
C:)
to
to
M
M
w-
(n c
(D
to
(D
to
(D
U)
(D
U7
(D
to
r
T
N
O
Cl
O
(O
't
r
r
O
N
O
N
r
N
O
O
O
1`
O
O
N
O
O
O
O
O
T
O
v
O
O
O
O
O
O
O
O
O
O
O
co
O
O
O
O
O
O
O
O
O
J Y
O
N
CD
(D
V'
N
M
P
r
N
t`
M
to
00
h
N
-M
to
r
N
to
M
to
CD
r-�
CD
M
O
T
(D
M
to
M
M
r
O
r
O
M
M
U)
M
-t
4
U
j
04
�
It
'IT
LO (N
LO
'IT
W d
`.-'
'd
It
too
too
to
toto
'd
tt
M
VM'
M
to
M
Cl)
M
M
Cl)
M
M
M
M
Cl)
M
M
M
Cl)
Cl)
Cl)
Cl)
M
M
tp
$
r
M
r
Cl)
r
Cl)
M
M
CD
O
O
O
r
O
O
O
O
O
O
O
O
O
O
O
O
O
T.
O
y4)
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C7
O
O
O
O
O
U)
U)
to
to
tC)
O
N
O
(D
r
co
00
O
O
(A
r
M
V
d'
to
U)
d'
c!"
d'
V.
-5:O
O
(D
N
T
t-
M
O
O
M
CD
CD
O
4
to
t`
E
ttl
d'
'c1'
M
N
O
O
CV
r
O
T
C7
T
O
C0
O
O
U)
_
$'ti
r
r
t�
r
V
M
n
t`
1-0
U)
n
r -N
U7
n
h
O
t-
O
d'
r
h
N
CO
Cl
t`
t`
'd'
N
3
P
r
P
P
r
P
r
O
T
r
P
O
r
r
r
r
r
T
0
❑
W
Q,O
O
(f')
O
U)
O
to
O
to
Co
to
O
to
M
co
V:
U)
M
O
to
O
to
Cl
ti
O
O
Cl
to
O
In
N
T
O
O
O
to
O
to
'd'
O
Q
ll)
r
T
r
r
O
O
T
O
r
T
r
T
r
P
T
JT
U)
M
00
T
V
M
U)
1`
r
M
[O
M
to
00
t�
ti
O
M
O
O
T
(P
U')
t()
(P
O
CD
(fl
M
v
M
r
(9
CO
0)
O
N
N
I
M
CV
N
It
to
NN
1`
to
v
N
to
N
to
r-
It
E
M
t
Cl)
It
M
v
M
to
M
to
M
U)
M
v
M
v
M
M
U)
Cl)
to
M
v
M
V
M
to
Cl)
to
M
�t
M
M
M
M
M
!n
.Lr
00
O
O
d'
'ct
N
O
O
O
O
O
O
co
O
O
O
M
O
M,
•O
00
O
O
O
M
O
r
O
M
0
N
d
d
N
O
N
r
N
t!)
M
(D
M
M
V'
O
't
O
(D
U)
Cl)
U)
M
CQ
to
M
00
Cl)
(0
(D
(D
rF
(0
r-
(D
N
r
.�
�
4
't
T
r1.
d.
't
v
V'
d'
d'
v
�
v
v
'd'
v
v
'a'
v
w(0
to
—
M
Cl)
Cl)
Cl)
M
Cl)
Cl)
Cl)
M
Cl)
M
M
M
M
M
M
M
Cl)
M
M
�
L
CD
(D
CD
(D
(D
00
M
O
00
00
M
r
(D
U)
to
00
Cl)
Cl)
r
co
to
N
(O
to
M
00
M
O
Cl
h
t-
h
M
00
Cl)
�F
W
-a)
M
O
00
OD
U)
r
O
N
O
O
O
O
Z
1`
(M
r
O
T
N
r
T
r
J
0000
00
00
co
co
00
00
00
00
00
00
00
OD
00
00
co
00
OD
(2
co
V"
:.:
v
P
r
r
P
r
r
r
P
P
P
r
r
r
r
r
T
r
k
C
C
v
M
U)
CD
h
00
M
O
N
M
't
U)
co
to
t-
0
00
0
M
U)
Cl
co
CD
N
O
M
(D
d
C
Z
It
U)
0
U)
to
0
to
L
O N
C M
NO
N
W
O
N
O
M
O
O
O
N
O
c
�
0
O
O
O
O
O
O
O
Yv
O
O
O
O
O
O
Co
O
O
O
O
O
O
O
U
E
CO
O
u
CAN
NN..
W
O
t`
CY)
M
�"'
N
CO
CA
O
O
W
O
N
CA
,
C O Q
0
.
O
7
O
O
O
O
O
CV
_
W `'�
O
O
O
O
O
O
O
WO
d
M
O
M
ONO
Cl)
O
M
W
v
o
O
o
M
O
o
o
Q
0
0
0
0
0
0
0
M
N
M
co
to
Cl)
M
c
C/± o
N
C!
o
M
o
0
0
-- --
0 0 0 0 0 0 0
COO
c~-
N
(00
'IT
N
N
W d
t
V
�
fl -
to
Cl)
'd
M
Cl)
M
M
It
M
Cl)
d y
O
00
Cl)
O
O
"
O
OO
O
O
r
O
O
O
O
O
t`
O•
N
N
N
�
M
M
O
fU
g
>
v
C
N
CV
CV
c-
O
d
`
O
0
N
CL
Fr-
(O
d•
—
0
O
O
O
O
(a
W
N
.o
Q c
r
C7
O
O
O
_
Z
CL
v
Lq
rn
rn
Cl
ti
rl�m
ti
p
0
0
0
0
0
0
CD
C~O
O
N
CClj
N
N
N
2 N
"T
4
tC)
Cl).
't`~d•
Cl)
M
M
M
IT
M
't
M
>
r
r
M
O T
'
Lr)
W
d) y
M
M
M
M
M
Cl)
Cl)
C
(y
O
W
O
Cl)
d•
O
O
J
`
N
N
CMC)
-
N
(O
O
V
N
O
N
h
!n
O
O
O
V
O
O
O
°.
.�
O
O
O
O
O
O
O
W
�N
Iq
N
N
CD
(0
r -F
Lo
'
d
�
-It
I
Cl)
M
Cl)
Cl)
Cl)
M
Cl)
7G
O
O
O
O
O
O
O
O
O
r
((D
Cl)
r
m
M
O
N
C
` cc O'
v
n
coO
M
Vim'
M
0)
0)
O
®
R
C
d
= >
tW0
Cl
N
dM'
N
N
N
CLo
co
'd
^V
I
Vr'
�
M
Mm
Cl)
Cl)
M
M
N
(O
>
O7
cq
7
7
O
C
"
Lo
E
E
�'
fn
w
y
't
d'
d'
V
d•
Ip
Cl)
Cl)
M
M
M
M
M
CV
�
L
w
v
�
CMO
M
M
N
N
Lo
LIJ
00
v
r
CV
r
O
O
Z
z
J
�p
U
w
c
v
W
co
W
W
W
W
W
LL
U
N
d
0
C
..J
v
It
(O
CC)
CO
W
W
1-
0
co
CO
O
0
O
r-
d
I
Stantec
APPENDIX
Jul. 17, 06
4.11 APPENDIX 11: TRACT 6557 STORM SEWER HYDRAULIC GRADE LINE
PROFILES
STANTEC v:\projects\270054.001drainkdrainage report_tr6557.doo 4.27
LO
C)
C)
N
E2
CD
Vj
kd
U)
E
-
-------------
C)
O
.2
U)
3:
UJ
D
oc
All,
UA
c!
i
11
4T
041 pL
o
C)
lEl >
Lo!
f .-R
ul
C)
q
6 41
cq
CD
LO
!is
El > >
CD
-T -TT
(D
C)
FU
O
C)CD
C)
CD
CD co
W)
m
co0)
co
co
co
co
M
m
C
LO
0
N
w
Q H
N
cD O
3
c9
Oui
o %r <rI.L
2
��
MM®
' N
0
3
LO
•
{
O
l .�
P
WI
+ W19
C/)
n
I
E
T
{
i
z
I
o
w
Q
' j
C
•�t C
t
N'
i
I
O
U4
m3Ip
i
�c
tt
k�
O
o
t
t
^
Y
L
4-
`
�j
.�y�
T
C
J
O
V "�WW
�+-
ch
Lu7u�
P!
MMM
P
p
to
.T
TV
ui
^ 0:
1�
�Wp
o
j
i
I
k i
I
O
i
�
!
3
:
i
'.O
I :
I
C
1
1
co
O
c6
0
M1 t
.OX i
-w dt
I t
O
LO j0a,
Cf) M "4LIE
+i
LIJ
i
'
3
O
®
Q qO
p
O
� (.0
M m
L M
It
M
M
d
W
LO
0
a,
c
M
3
p -o to
tL
Cl) (gy14 p qk,
U)
c
W
U
id MMS
p
p
v7
�
LO
I (
+ULJI
Lo. LP W
i
cc
fA' {C j
^I
, f
i
CD
LO
i
i
1
j
p
U
^i
E
p
W
i
N
i
i
o
i
UJ
•�
vWm
i
!
N
{
Lo Ul
I
N
p
LO
V I Lol
'R' �lv.
y ,
�
r
C4')
((7
d
;> >:
-1 -. II
ca
i
d
I
i
to
N
i
(
O
O
{
i
i
y
3 i
i(
o { j
O
C)
Q'in W
p
N
tfi M
,N`
In
ch
O
Ci.
C)
O
w
O O
® �
O O
p
O
O
y
(O O
M
LO M
(Y)
(rj
(7
�
M
W
C)
C)
04
C)
0
0
E
W
00
.2
(n
C�
Lo
C)
to
LO
'C
U->
oc
L4
4
C)
C)
CD
CY)
LO
(Y)
0 G
Lf) U-)
cy) w
Lo to
C?
uj
O
co
cq Ci
LL4 W w
C)
C)
10—
C,
Lf)
C\l
C)
LC
C,
c
C)
LO
C)
U,'
cy L6
'lob 31
L
C)
LO
CP C?j ci)
8
U4 W W
I
> >
U)
CKI
C)
C)
C) C)
C!
O
CO (0
(Y) (Y)
LO LO
Mce)
(Y) M
ui
04�
, pl.�
I
C)
C)
C\l
0
&
U4
E
0
0
c!
C�
LO
co
0)
CY) co
+C)
w
kL
7-7
H;H
C)
i�5
is; �
T
oi
L4
LO
Lo
U?C14
09 M 1
VC
TUJI Ljj
cc)
C)
!> >
rj)
U-)
orl;
C)
Lo
LL
-j
C)
LO
Lj
C:
"a
Cb
q -
14
j: �n.
Lo
id, (61
C)
!C? C?
•
CD
A W, LLJ
'E
C)
CDO
C)
q
M 0)
(0 LO
CY)
L6
LO
c1r)
Lo
Cf)
t—
It
ce)
(Y)
't
(Y)
CY)
LLJ
O
LO
0
N
LO Co
� -.03
N
V
CI
c
1
O
Cq Lo
i/)
E
2
co MLO
LU
UM
M W
M
o
(�
77
LO
W W
O
m
V ''
(
1
M
S
Q
A
I
i
' 1: i.
2
i
I
,
t
0
LO
j
C
LO
bi
I {
1
0
4
I
CO Lo as 0c):
co:
LO
^
i
}
y
E
o
q
t
i
�
o
LO
i !
o
LO{
M
IJ
to
c
4 d C
CQ
E
i
O
O
d
O
LO
N
LLf w
o
N
I i
I
( i
i
O
O
N
I
LO
I
t
Iy
i 11
I
o
t
106
q
,.Ao
O
i c"J
I`
j
iI
,
I
i
�
Mi M:
j
!
LO
o
0
0
0 0
0
0
0
0
d
CD co
ip LO
co
co
co
dM
M
M
W
I
C) C) C) CD C)
O C) Q C�
m C-� vi 00
(D (D LO 'IT
M m (Y) co co
Y)
n
N
O
LO
r%-
04
C)
LO
N
LO
cq
w.
OO
cq
ti
C)
LO
LO
04
C)
C)
LO
I-
C)
LO
LO
C\l
R
to
17
LO
co
CD
LO
LO
04
C4
In
04
04
10 c
00
w
.41
LO
ct al
LO
iz
44
Wit
04
l U
.r
C)
H L
0
N
WW2
W
^
LO
u
C
J
Q
d-
(6 M
^
co
to
+
cfl
W W
i
itca
I 4
>
W
65
1—
Q
C
}
LO
Lo
T
2
,
'
I
O
LO
�
f t
i
2
C11
S
1
'
k
7It
®w
�
M
Ln
}
I
�
t
I
I
N
}
jj
I o
CD
ta
Ul
C5C4
®oth
ij
�ici
L
ww
j 4 ►i I
a
LO
N
C14 LO
M CO
OD
M M
LO
M
c1r)
M
W
C) C) C) C) C)
C! q
N— LO
(D LO U') ";T
(Y) M0 ce) CY)
LO
I --
LO
C14
C)
I
m
C) C) CD
CD
CD
Ln Ln
cr) m
C:)
C)
C)
C? CD p
v—
p
06 ko
P.
% --- I
cl-)
t,
S
>
ED
CD
jz:
Cr}
CC)
co
00
-9
U-1
M
CD
ko
CC)
C)
C)
CD
v—
p
CD
P.
% --- I
C:)
t,
LAI
>
ED
ko
Cr}
CC)
co
CC)
-9
U-1
In
LD
C")
C)
co
24
9
ko
ai
C=)
C=)
P.
p
Qo
LAI
Tr
Nd"
Cr}
cr)
ai
Lf)
CC)
rw-
L.r)
CN
99
9
2rip]
>
a)
C)
C)
m
C:)
CD
C:)
Col
COI
p
ko
"Cr
cr)
uj
p
p
C?
C?
C:)
Lf)
cw-)
LDL)
(Tr
Lf)
CC)
rw-
L.r)
CN
99
9
2rip]
>
a)
C)
C)
m
C)
p
cr)
LID
CD
C:)
Lf)
cr)
C:)
;may.
cr)
C)
CC)
COI
p
ko
"Cr
cr)
uj
ii
C:)
C:) Q C:)
6
LD LID LD
(Y') (Y') co
CD CD C)
O cz:! p
ko
(L4
W
LF)
C)
C:)
C:) Q C:)
6
LD LID LD
(Y') (Y') co
CD CD C)
O cz:! p
ko
Zd- lat
C)
C) CD C) C)
p C? C) CP
Ul
r cr)
> ko ko 14-
.(D co co co co
LU
571
to
co
mw
Ln
CN
BE
C) C)
C? p
I— Ln
'cr 'cr
co co
ig
2rc
IT
H,
7071
�
�
CD CD CD
Q C? p
00 Ln (14
tn Lf) Li-)
c1r) m CO
co CD C)
C
co co
C)
!C
r)
c)
Lur)
CD
;3'
LD
{ti )
LD
C14
9
C) col C) C) C) C)
*,� 00 ko cq cr) c1r)
>
W co cw-) Ln 'cr
LD Lf) (Y')
LLJ
LD
.C—
A
10
4i
A,
�i
�
Im
w
I
I
I
I
I
r
I
R
I
I
C:)
C)
I I I
i- I I
C)
C)
I i
C�
C:
C�
iD
Q
uj
C)
z
co
C)
CD
C)
cz
C?
p
kL
P
0
z
CIF)
CC)
O
cy')
cr)
>
LD
LD
LD
AZ
co
co
r -S
m
C)
w
01
LD
L)
C:)
C)
I I I
i- I I
C)
C)
I i
C�
C:
C�
iD
Q
6
C)
z
co
C)
CD
C)
cz
C?
p
p
P
CIF)
CC)
cr)
cy')
cr)
>
LD
LD
LD
AZ
co
co
C)
w
LD
L)
ID
CD
C)
I I I
i- I I
i '� i
I ! I
I i
C:
a i
iD
C:)
6
C)
z
LAO
C)
Co
C)
9
A
9
H
I I I
i- I I
i '� i
I ! I
I i
I#
a i
C:)
C)
C)
C)
C)
C)
C)
cz
C?
p
p
P
Cd-
>
LD
LD
LD
AZ
co
co
cel
w
S
\
MET
I
1-6
LD
03
W
Of
CD
Ln
Ln
I* -
LD
�
CD o p C
LD a)Irr � co co
� m co cr) m co
W
N
9
A
A
En
C
ai
u.
U
a)
O
CL
2
WU
LU
U-
7
0 O
Q
(�
M C,
w
w�
d
xz
�w
;I0
2
®
LU3
co CIO
ix
1-6
LD
03
W
Of
CD
Ln
Ln
I* -
LD
�
CD o p C
LD a)Irr � co co
� m co cr) m co
W
N
9
A
A
En
C
ai
u.
U
a)
O
CL
I
m
G
�/C
LUMIYU ULAJ,) LAM:
........ ..........
U AREA 28
0.1 1 ACRES
L=93 FT
T—A,-7,
638 7
ABRA WAY
T............
>
Z
AREA 4
0.36 ACRES
RFRK�141PF PnA n - -------- - ---- — --L= 209 FT--===o.--
ACT 6 '187
LEGEND
ESS/
..... ..........
SURFACE FLOW DIRECTION
DRAFTED BY.
CONCENTRATION NODE NUMBER (CATCH BASIN NUMBER)
i2 f
29 (18")
STORM DRAIN LINE NUMBER (STORM DRAIN PIPE SIZE)
AREA 35
,„w.�„, ��
�, .�,,.._ ...,...... ....... ......msµ.....,...,,....
0.11 ACRES
TRIBUTARY AREA
TRACT 6557
L= 93 FT
LONGEST WATERCOURSE LENGTH
7114106 ROGER D. HANEY
DATE
WATERSHED (TRIBUTARY AREA) BOUNDARY
k"; I I t:$
"lmv� OF AKERFIELD"
OF
ACT 6 '187
LEGEND
ESS/
..... ..........
SURFACE FLOW DIRECTION
DRAFTED BY.
CONCENTRATION NODE NUMBER (CATCH BASIN NUMBER)
No. C-47354
29 (18")
STORM DRAIN LINE NUMBER (STORM DRAIN PIPE SIZE)
AREA 35
TRIBUTARY AREA NUMBER
RDH
0.11 ACRES
TRIBUTARY AREA
TRACT 6557
L= 93 FT
LONGEST WATERCOURSE LENGTH
7114106 ROGER D. HANEY
DATE
WATERSHED (TRIBUTARY AREA) BOUNDARY
k"; I I t:$
"lmv� OF AKERFIELD"
OF
STORM DRAIN LINE
DATEI REVISIONS
EXISTING STORM DRAIN LINE (TRACT 6387)
CATCH BASIN
ji
ti
cj
..........
ti
. ...........
OUTLET STRUCTURE c
..... .. ....... . ........
.... . ........
.... ........
.... . .
ACT 6 '187
.......
LEGEND
ESS/
..... ..........
SURFACE FLOW DIRECTION
DRAFTED BY.
CONCENTRATION NODE NUMBER (CATCH BASIN NUMBER)
No. C-47354
29 (18")
STORM DRAIN LINE NUMBER (STORM DRAIN PIPE SIZE)
AREA 35
TRIBUTARY AREA NUMBER
RDH
0.11 ACRES
TRIBUTARY AREA
TRACT 6557
L= 93 FT
LONGEST WATERCOURSE LENGTH
7114106 ROGER D. HANEY
DATE
WATERSHED (TRIBUTARY AREA) BOUNDARY
k"; I I t:$
"lmv� OF AKERFIELD"
OF
STORM DRAIN LINE
DATEI REVISIONS
EXISTING STORM DRAIN LINE (TRACT 6387)
CATCH BASIN
STORM DRAIN MANHOLE
..........
o
OUTLET STRUCTURE c
.... . ........
I? f
...................
C/ 64412,
5y
f
... . ......... . .....
. .............
..... ..........
.......
.... .... ..... .....
ESS/
..... ..........
. . ..................................
GRAPHIC SCALE
100 0 so 100 200
( IN FEET )
1 inch = 100 ft.
DESIGNED BY:
PB PREPARED UNDER THE SUPERVISION OF.
ESS/
PROrkj% u DRAINAA00"E MAP%
PROJECT NO.
202500500
DRAFTED BY.
PB
No. C-47354
STANTEC CONSULTING INC.
CHECKED BY:
RDH
Ex .12/31/07
1400 18TH STREET
BAKERSFIELD, CA 93301
TRACT 6557
SHEET
I
7114106 ROGER D. HANEY
DATE
StanteC 661.616.0000 Oanwcom
k"; I I t:$
"lmv� OF AKERFIELD"
OF
DATE:
DATEI REVISIONS
#`
r
:f .
/'
1