Loading...
HomeMy WebLinkAboutDrainage Study For Tract 6557CIT D�ROF SSION� ) �` -47 EXP. �B Q OF C A1.�F®��� DRAINAGE STUDY FOR TRACT 6557 CITY OF BAKERSFIELD Project No. 2025005400 Prepared by: STANTEC CONSULTING INC. 1400-18 th Street Bakersfield, CA 93301-4428 Phone: (661) 616-0000 Prepared on: July 17, 2006 Roger D. Haney. Date R.C.E 47354 Exp. 12/31/07 1.0 CHAPTER 1.....................................................................................................................1.3 1.1 INTRODUCTION..............................................................................................................1.3 1.1.1 Purpose.............................................................................................................1.3 1.2 WATERSHED DESCRIPTION..........................................................................................1.3 1.2.1 Location.............................................................................................................1.3 1.2.2 Land Use...........................................................................................................1.3 1.2.3 Soil Description..................................................................................................1.3 1.2.4 Topography........................................................................................................1.4 1.2.5 Drainage Sub areas....:......................................................................................1.4 1.3 METHODOLOGY.............................................................................................................1.4 1.4 SUMMARY.......................................................................................................................1.4 2.0 CHAPTER 2.....................................................................................................................2.5 2.1 HYDROLOGY CALCULATIONS.......................................................................................2.5 2.1.1 FIVE AND TEN YEAR FREQUENCY PEAK FLOW ANALYSIS TABLES ..........2.6 2.1.2 RETENTION BASIN CAPACITY CALCULATIONS............................................2.7 3.0 CHAPTER 3................................:....................................................................................3.8 3.1 HYDRAULICS CALCULATIONS.......................................................................................3.8 3.1.1 CATCH BASIN DESIGN.....................................................................................3.8 3.1.2 STORM DRAIN PIPE DESIGN..........................................................................3.9 3.1.3 CLOSED CONDUIT DESIGN MATERIAL AND DESIGN LIFE .........................3.10 4.0 APPENDIX.....................................................................................................................4.12 4.1 APPENDIX 1: SOIL SURVEY OF KERN COUNTY, CALIFORNIA .................................4.13 4.2 APPENDIX 2: CITY OF BAKERSFIELD URBAN RUNOFF COEFFICIENTS AND 1 INTENSITY VS. DURATION CURVE (STANDARDS D-1 & D-2) ...................................4.14 j 4.3 APPENDIX 3: TRACT 6557 RETENTION VOLUME CALCULATIONS ...........................4.15 4.4 APPENDIX 4: TRACT 6557 RETENTION BASIN DETAIL DRAWINGS .........................4.16 4.5 APPENDIX 5: CITY OF BAKERSFIELD STANDARD DRAINAGE BASIN,. STANDARD CHAIN LINK FENCE AND STANDARD CHAIN LINK GATES (STANDARDS D-11, D-12 & D-13).........................................................................................................................4.17 i 4.6 APPENDIX 6: DRAINAGE TO TRACT 6387...................................................................4.18 1 4.7 APPENDIX 7: TRACT 6557 RETENTION BASIN SOIL ABSORPTION EVALUATION... 4.19 4.8 APPENDIX 8: CALCULATION METHOD FOR THE STREET FLOW WATER DEPTH AT THEGUTTER......................................................:..........................................................4.20 f 4.9 APPENDIX 9: TRACT 6557 CATCH BASIN DESIGN......................................................4.21 4.9.1 Curb Opening Inlet Dimensioning.....................................................................4.21 4.9.2 Inlet Nomographs of City of Bakersfield...........................................................4:22 i 4.10 TRACT 6557 STORM SEWER MODEL ........................................... .-- .............................. 4.23 4.10.1 Storm Sewer Summary Report .........................................................................4.23 4.10.2 Storm Sewer Inventory Report .........................................................................4.24 j' 4.10.3 Hydraulic Grade Line (HGL) Computation Procedure.......................................4.25 STANTEC v:\projeds\270054.00\drain\drainage report_U6557.doc 1 .1 Stantec D R f 4,r ri5 Y I" 6�557 Chapter 1 Jul. 17, 06 4.10.4 Hydraulic Grade Line Computations ................................................................. 4.26 4.11 APPENDIX 11: TRACT 6557 STORM SEWER HYDRAULIC GRADE LINE PROFILES4.27 4.12 APPENDIX 12: TRACT 6557 PROPOSED DRAINAGE MAP ........................................4.28 STANTEC v:\projects\270054.00kdrain\drainage report_tr6557.doc 1.2 z Stantec CITY OF (IAKE.RSFIELD Chapter 1 Jul. 17, 06 1.1.1 Purpose The purpose of this study is to develop a drainage plan that provides adequate drainage facilities for the single family residential development of Tract 6557 — Phases I & II. This comprehensive study, for each of the two tract phases, develops an efficient system to collect the runoff from the residential development and conveys that runoff to the proposed retention basin as surface flow in street gutters and, when necessary, as subsurface flow in the storm drain pipes. 1.2 WATERSHED DESCRIPTIOJ 1.2.1 Location The property is located in the north half of the southeast quarter of Section 27, Township 30 South, Range 27 East, Mount Diablo Meridian in the City of Bakersfield, County of Kern, State of California. The property is bounded by Stine Road on the east, future Berkshire Road on the north, future Mountain Ridge Drive on the west and Tract 6387 on the south. 1.2.2 Land Use { The project is a phased development with two phases and has a single family residential land use designation. Currently, the 79 -acre subject property is utilized for agricultural purposes and is occupied by alfalfa crops. This project consists of 135 single family units in the first phase and 173 single family units in the second phase for a total of 308 units with an average lot size of approximately 7,206 square feet. 1.2.3 Soil Description According to the United States Department of Agriculture Soil Conservation Service Kern County Soil Survey, the dominant soil types are Cajon sandy loam, Kimberlina fine sandy loam, f and saline -alkali Kimberlina fine sandy loam. These types of soils have well draining characteristics. The hydrologic soil group is A for the Cajon sandy loam and B for Kimberlina fine sandy loam as shown on the attached Soil Survey Map and table presented in Appendix 1. <3� STANTEC v:\projects\270054,00\drain\drainage report_ r6557.doc 1.3 1, e' Y 1 9 Y �P, fi . `+ ":ie Chapter 1 Jul. 17, 06 1.2.4 Topography The area is generally level with an existing drainage pattern from northeast to southwest. The Farmers canal runs through the property approximately west of Stine Road within an easement granted to the Kern Delta Water District. The canal will be relocated prior to the development of the subject land. 1.2.5 Drainage Sub areas The watershed is broken into thirty four sub -areas based on the design grades. The surface area and the length of the longest watercourse of each sub -area are shown on the attached Proposed Drainage Map in the Appendix 12. The drainage areas do not include the Farmer's Canal because the canal collects the runoff within its easement. �WIM M IDI C61 The drainage study is prepared in accordance with the City of Bakersfield Subdivision and Engineering Design Manual. A hydrological analysis of the proposed development is performed using the rational method to determine the 5—year 24-hour and 10 -year 24-hour storm peak discharges. The 5 -year 24-hour storm flow quantities are used to check the flow depth at the gutter and to determine the catch -basin locations. The catch -basins are placed at locations where the flow depth exceeds the curb height as indicated by the design manual. The 10 -year 24-hour storm flow quantities are used for the capacity calculations of the proposed closed conduits. The curb -opening dimensions, and the storm drain pipe size and slopes are determined per section 2.4.4 of the City of Bakersfield Subdivision and Engineering Design Manual. The 100 -year 24-hour rainfall volume is used to calculate the minimum required capacity of the retention basin. The attached Proposed Drainage Map in Appendix 12 depicts the storm drain system layout. The supporting hydrologic and hydraulic calculations are presented. in the second and third chapters of this study. The study shows that adequate drainage will be provided for Tract 6557 with the proposed storm drain system and the retention basin. The storm drain system and the retention basin will be fully constructed during the construction of the first phase of the development as the drainage of the primary phase utilizes these facilities. STANTEC v:\projects\270054.00\drain\drainage report r6557.doc 1.4 w Stantec IN I Y"Y OF s; RS'- LAD Chapter 2 Jul. 17, 06 The hydrologic design is predicated upon full urban development of the tributary watershed which is less than one square mile and therefore designated as a local waterway. The drainage areas and the slopes from divide point to the point of concentration are determined per the proposed grading plan. The initial time of concentration for the initial areas are determined using 15 minute roof to gutter time and the average velocity through the initial area. The travel time in the downstream areas is calculated using the average flow velocity of the flow accumulated at the upstream plus the additional flow generated in the downstream area. When reaches from two or more watersheds meet, the longest time of concentration governs. The rainfall intensities are determined using the Intensity -Duration curve (Sheet D-1) of City of Bakersfield Subdivision and Engineering Design Manual. This chart is attached in Appendix 2. The runoff coefficient (C) is determined from the City standard D-2 based on the characteristics of the watershed, development type, development density and the soil type. The runoff coefficient is interpolated using the average lot size on sandy soil for each tributary area. The Rational Method Urban Runoff Coefficients table is also presented in Appendix 2. The design runoff peak discharge is calculated using the formula; Q=CIA Where: C is the runoff coefficient "I" is the intensity in inches per hour "A" is the drainage area in acres "Q" is the design runoff in cubic feet per second. The above explained steps are repeated for each reach of the watershed and. the- results are tabulated for 5 -year 24-hour and 10 -year 24-hour rainfall events. These tables are presented in Section 2. 1.1 (Table 2.1.1-A and Table 2.1.1-B). STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc 2.5 Stantec t Chapter 2 Jul. 17, 06 2.1 HYDROLOGY CALCULATIONS The hydrologic design is predicated upon full urban development of the tributary watershed which is less than one square mile and therefore designated as a local waterway. The drainage areas and the slopes from divide point to the point of concentration are determined per the proposed grading plan. The initial time of concentration for the initial areas are determined using 15 minute roof to gutter time and the average velocity through the initial area. The travel time in the downstream areas is calculated using the average flow velocity of the flow accumulated at the upstream plus the additional flow generated in the downstream area. When reaches from two or more watersheds meet, the longest time of concentration governs. The rainfall intensities are determined using the Intensity -Duration curve (Sheet D-1) of City of Bakersfield Subdivision and Engineering Design Manual. This chart is attached in Appendix 2. The runoff coefficient (C) is determined from the City standard D-2 based on the characteristics of the watershed, development type, development density and the soil type. The runoff coefficient is interpolated using the average lot size on sandy soil for each tributary area. The Rational Method Urban Runoff Coefficients table is also presented in Appendix 2. The design runoff peak discharge is calculated using the formula; Q=CIA Where: C is the runoff coefficient "I" is the intensity in inches per hour "A" is the drainage area in acres "Q" is the design runoff in cubic feet per second. The above explained steps are repeated for each reach of the watershed and the' results are tabulated for 5 -year 24-hour and 10 -year 24-hour rainfall events. These tables are presented in Section 2. 1.1 (Table 2.1.1-A and Table 2.1.1-B). STANTEC v:\projects\270054.00\drain\drainage report_46557.doc 2.5 Column 1: Input of the watershed sub -area numbers Column 2: Input of the watershed areas (acres) Column 3: Input of the watercoarse length and elevation difference along the watercoarse (ft) Column 4: Output of the slope of the watercoarse (ft) - Elev. Diff./ Length Column 5: Input of the upstream watershed sub -area number (R defines the Road section) Column 6: Input of the downstream watershed sub -area number or downstream catch basin number Column 7: Discharge of the upstream watershed sub -area Column 8: Output of the street flow depth at the gutter (ft) - Computed by Manning's Equation in an iterative process per the flowrate and street slope data which define the spread, depth of flow, area of flow and the flow velocity at the gutter TABLE 2.1.1-A Column 9: Output of the street flow area (ft) Column 10: Output of the street average flow velocity (fps) Column 11: Runoff coefficient defined per the City of Bakersfield Standard D-2 Column 12: Output of the Total Time of Concentration (min.) - includes the 15 minute roof to gutter time and street flow travel time Column 13: Rainfall Intensity (in/hr) defined for the specific storm event per the City of Bakersfield Standard D-1 Column 14: Discharge (cfs) at the concentration point downstream of the watershed defined by the Rational Method Q = C.I.A. Column 1: Input of the watershed sub -area numbers Column 2: Input of the watershed areas (acres) Column 3: Input of the watercoarse length and elevation difference along the watercoarse (ft) Column 4: Output of the slope of the watercoarse (ft) - Elev. Diff./ Length Column 5: Input of the upstream watershed sub -area number (R defines the Road section) Column 6: Input of the downstream watershed sub -area number or downstream catch basin number Column 7: Discharge of the upstream watershed sub -area Column 8: Output of the street flow depth at the gutter (ft) - Computed by Manning's Equation in an iterative process per the flowrate and street slope data which define the spread, depth of flow, area of flow and the flow velocity at the gutter TABLE 2.1.1-B Column 9: Output of the street flow area (ft) Column 10: Output of the street average flow velocity (fps) Column 11: Runoff coefficient defined per the City of Bakersfield Standard D-2 Column 12: Output of the Total Time of Concentration (min.) - includes the 15 minute roof to gutter time and street flow travel time Column 13: Rainfall Intensity (in/hr) defined for the specific storm event per the City of Bakersfield Standard D-1 Column 14: Discharge (cfs) at the concentration point downstream of the watershed defined by the Rational Method Q = C.I.A. {7 Pi CITY f3AKFRSF1E7,LD Chapter 2 Jul. 17, 06 2.1.1 FIVE AND TEN YEAR FREQUENCY PEAK FLOW ANALYSIS TABLES The different frequency rainfall event hydrology tables present a summary of the hydrology calculations performed using the method explained in section 2.1. These calculations were repeated for different return interval rainfall events to predict the proposed drainage pattern for various storms. The five-year twenty four-hour peak flow analysis is presented in table 2.1.1-A and the ten-year twenty four-hour peak flow analysis is presented in table 2.1.1-B. The tables refer to the watershed areas depicted in the Proposed Drainage Map which is attached in the Appendix 12 of this drainage study. The upstream -areas (column 5) and the downstream area (column 6) for each sub -area (column 1) are listed in the tables to .represent the drainage pattern of the area. The sub -area is recognized as an initial area if there isn't any upstream flow source. For each sub -area the street flow water depth (column 8) is computed. This depth is calculated at the gutter and for the 5 -year 24-hour rainfall runoff it is required to be below curb level according to the City of Bakersfield design standards. The street flow depth at the proposed development is predicted to be below the curb level for the 5 -year 24-hour storm event. See Appendix 8 for the calculation method of the street flow depth and the iteration procedure to calculate the peak runoff. The flow area (column 9) represents the cross-sectional area of the flow on the street and gutter, and calculated using the flow depth at the gutter. The average flow velocity (column 10) is calculated using the area weighed average of the gutter flow and the flow on the paved surface. The time of concentration (column 12) is computed using the roof to gutter time plus the travel time of the flow on the street reach. The following sub -area downstream of the same reach does not have the roof to gutter time. The travel time of the downstream area is added to the total time of the upstream area of the same reach in order to calculate the total time at the end of the downstream sub -area. The runoff coefficient "C" (column 12) is determined using the City Standard (Sheet D-2) for the average lot size in the sub -division. The rainfall intensity (column 13) is determined using the Intensity -Duration curve (Sheet D-1) of City of Bakersfield Subdivision and Engineering Design Manual. The downstream discharge (column 14) is the calculated peak flow discharge at the downstream end of the sub -area. STANTEC v:\projects\270054.00\drain\drainage reporUr6557.doc 2.6 Chapter 2 Aug. 30, 06 The proposed catch basins are abbreviated as CB# in the tables and are accepted -to be a surface flow reach end point. Therefore, the catch basins are assumed to have enough capacity to capture all of the flow from the upstream. The catch basin calculations are presented in .the Hydraulics section of this report and they are designed to have enough capacity to capture the 10 -year 24-hour storm. 2.1.2 RETENTION BASIN CAPACITY CALCULATIONS The retention basin capacity is based on the formula given in Section 2.8.2.1 of City of Bakersfield (COB) Subdivision and Engineering Design Manual. V = 0.15xj (CxA) (24 -hr, 100 -yr storm) Where: V is the design volume in acre-feet C is the runoff coefficient A is the drainage area E denotes the summation of all C x A for,the areas draining into the basin The average lot* size is 7206 square -feet. Therefore, the interpolated runoff coefficient is 0.388 per the City of Bakersfield Standards Figure D-2. The calculated retention basin volume is 4.26 acre-feet. The provided retention basin has a volume of 4.47 acre-feet with 2:1 side slopes. The high water depth is 13.55 feet. 1.70 feet of freeboard is provided which brings the total basin depth to 15.25 feet. See Appendix 3 for detail calculation, and Appendix 4 for detail drawings of the retention. basin. Sump is constructed per COB standards D-11, D-12, and D-13 which are stated on the details drawing of the retention basin and attached in the Appendix 5 of the drainage study. The drainage to south, to Tract 6387 is computed in Appendix 6, and the capacity of the basin of Tract 6387 is checked to have adequate volume to retain the runoff from Tract 6557. The volume of water to be retained from Tract 6557 is 0.10 acre-feet. The retention basin of Tract 6387 is proved to be oversized to retain the above given volume from Tract 6557 (Please see the approved Drainage Study of Tract 6387 by the City of Bakersfield). In addition, the soil at the bottom of the retention basin is required to allow the basin to drain in seven (7) days. The basin percolation test report prepared by the Krazan & Associates recommends that the basin to be over -excavated to a depth of 21 feet below existing grade to expose the more permeable sand soil layer. The over -excavated basin will then be backfilled with the free draining sand. The side slopes are stable as described in the report. The percolation test report is attached to this study in Appendix 7. STANTEC v:tprojectst270054.00\draintrevisions-07 18_2006\drainage report_K557.doc 2.7 z r <. CIP'Y OF Chapter 3 Jul. 17, 06 011100MMOME 3.1.1 CATCH BASIN DESIGN The catch basins are designed per the methods outlined in the Federal Highway Administration Urban Drainage Design Manual Section 4.4.4.2 "Interception Capacity of Curb Opening Inlets on Grade" and Section 4.4.5.2 "Interception Capacity of Curb -Opening Inlets in Sag Locations". 3.1.1.1 Curb Openings on Grade The length of a curb -opening inlet, on grade, required for total interception of gutter flow on a pavement section with a uniform cross slope is expressed by the equation; 042 03( ) 1 0.6 LT = KuQ SL `n X Se Where: om LT = Curb opening length required to intercept 100 percent of the gutter flow, (ft). Si = Longitudinal slope Se = Equivalent cross slope which can be computed using the equation: Se = Sx + SWEo Where: SW= cross slope of the gutter measured from the cross slope of the pavement S,, = a a = local depression (ft) W = Gutter width (ft) E0 = Ratio of flow in the depressed section to total gutter flow determined by the gutter configuration upstream of the gutter. STANTEC v:\projects\270054.00\drain\drainage reporUr6557.doc 3.8 Stantec Chapter 3 Jul. 17, 06 r trt 1*z'Y �,s\f i� Via,` r� .. .r..[,r` Eo = �" _ (Flow in the gutter section) / (Total flow on the street) The study does not contain any catch basins on grade. 3.1.1.2 Curb Openings in Sag Locations The capacity of a curb opening inlet at sag depends on water depth at the curb, the curb opening length, and the height of the curb opening. The inlet operates as a weir to depths equal to the curb opening height and as an orifice at depths greater than 1.4 times the opening height. All of the curb openings in this study are designed for the weir condition to keep the flow depth at gutter below the curb level. The equation for the interception capacity of a depressed curb -opening inlet operating as a weir is: Q; = Cx, (L + 1.8W)dls Where: Cw 2.3 L = Length of the curb opening (ft) W = Lateral width of depression (ft) d = depth at curb measured from the normal cross slope (ft) All of the catch basins are at sag location. A summary table for the design of the catch basins is presented in Appendix 9. The pipe system design computations are per the City standard requirements for the closed conduit systems in local waterways. Therefore; The closed conduit system may be designed to full conduit capacity and pressure flow. The hydraulic entrance condition in a closed conduit local waterway is such that the 10 year discharge has the specified freeboard in .the upstream channel. All the proposed manholes in Tract 6557 are non -pressure type therefore the hydraulic grade line is more than 0.5 -foot below the gutter. The same hydraulic grade line requirement is considered for the design of inlets. The assumed energy losses due to entrance and exit conditions, bends, and transitions are as adapted in FHWA HEC 22. STANTEC v:\projects\270054.00\drain\drainage repori_tr6557.doc 3.9 tarttec f.lR.....; �IA aii Chapter 3 Jul. 17, 06 For bends less than 90 degrees, the following equation was used to compute junction loss coefficients. K= 1— 90 — Deflect90 ) ionAngle a If the junction is an inlet, K is multiplied by 1.5. In no case K is less than 0.15 for Manholes or 0.50 for inlets. For bends greater than or equal to 90: Inlets K = 1.5 Manholes K = 1.0 For lines at ends of a branch, K = 1.00 The minimum pipe size diameter used is 18 inches per the City Standards. The storm drain system is placed with a straight alignment within the traveled way, 5 feet away from the street centerline. Manholes are provided at junctions and at intervals not to exceed 600 feet and at all bends higher than 15 degrees. The hydraulic grade line for the conduits draining into the proposed retention basin is designed to the half design depth elevation of the basin per section 2.4.4.8 of City of Bakersfield Design Standards. The design computation is performed using Hydraflow Storm Sewers version 2005 by Intellisolve. The plan view of the model, the inventory report, the summary table, the inlet report, the hydraulic grade line computations as well as the HGL computation procedure for each calculation is presented in the Appendix 10 of this drainage study. In addition profiles of each storm drain system segment showing the pipe dimension and slope, the proposed groundand the computed hydraulic grade line is presented in Appendix 11 of this drainage study. Durability of a pipe material is as significant as its ability to perform intended structural and hydraulic functions. The City of Bakersfield requires the closed conduits to have a minimum useful life of 50 years. 1 The proposed storm drain system is reinforced concrete. The factors influencing the concrete durability are the concrete compressive strength, density, absorption, cement content and type, aggregate characteristics, total alkalinity, concrete cover over the reinforcement and admixtures. 7 A minimum of 2 feet of cover is maintained for the storm drain system per the City Standards. { The surrounding soil characteristics are described as mainly Silty Sand/ Sandy Silt (SM/ML) and 1, STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc 3.10 Chapter 3 Jul. 17, 06 sand (SP) according to the Geotechnical Report prepared by The Krazan & Associates dated February 28, 2006. The Soil samples obtained from the site for the aforementioned Geotechnical Report indicate that the sulfate concentrations detected from the samples were less than 0.02 percent and are below the maximum allowable values established by HUD / FHA and UBC. The test boring locations were checked by the Geotechnical Engineer for the presence of groundwater during and immediately following the drilling operations. Free groundwater was not encountered; therefore no adverse effects are expected due to the exposure of the storm drain pipe to the groundwater. The design life of the closed conduit also depends on the chemical characteristics of the flow content and the flow velocity in the system. The maximum flow velocity in the system is calculated as 4.51 feet per second for the 10 -year 24-hour storm event. The flow content of the pipe system is expected to be non -acidic and without any significant Chloride content considering the general characteristics of normal rainfall runoff. Therefore the closed conduit system is expected to have the required design life. j i STANTEC v:\projects\270054.00\drain\drainage report_trS557.doc 3.11 R61>�i>t RtA � 3F y,. D[g. APPENDIX Jul. 17, 06 4.1 Appendix 1: Soil Survey of Kern County, California 4.2 Appendix 2: City of Bakersfield Urban Runoff Coefficients and Intensity vs. Duration Curve (Standards D-1 & D-2) 4.3 Appendix 3: Tract 6557 Retention Volume Calculations 4.4 Appendix 4: Tract 6557 Retention Basin Detail Drawings 4.5 Appendix 5: City of Bakersfield Standard Drainage Basin, Standard Chain Link Fence and Standard Chain Link Gates (Standards D-11, D-12 & D-13) 4.6 Appendix 6: Drainage to Tract 6387 4.7 Appendix 7: Tract 6557 Retention Basin Soil Absorption Evaluation 4.8 Appendix 8: Calculation Method for the Street Flow Water Depth at the Gutter 4.9 Appendix 9: Tract 6557 Catch Basin Design 4.9.1: Curb Opening Inlet Dimensioning 4.9.2: Inlet Nomographs of City of Bakersfield 4.10 Appendix 10: Tract 6557 Storm Sewer Model 4.10:1: Storm Sewer Summary Report 4.10.2: Storm Sewer Inventory Report 4.10.3: Hydraulic Grade Line (HGL) Computation Procedure 4.10.4: Hydraulic Grade Line Computations 4.11 Appendix 11: Tract 6557 .Storm Sewer Hydraulic Grade Line Profiles 4.12 Appendix 12: Tract 6557 Proposed Drainage Map STANTEC v:\projects\27GO54.Oo\drain\drainage report_tr6557.doc 4.12 Stantec D IF A1 t'i3 f- Pik £^A.: DY 'T 7 C -l' TRAC', s APPENDIX Jul. 17, 06 fAj STANTEC v:\projects\270054.00\drain\drainage reporLtr6557.doc 4.13 17/3( T. 36 3E C This soil survey map was compiled by the U.S. Department of Agriculture, Soil Conservation Service, and cooperating agencies. Base maps are orthophotographs prepared by the U.S. Department of the Interior, Geological Survey, from 1976. 1977, and 1978 aerial photography. Coordinate grid ticks and land division corners, if shown, are approximately positioned. 1 3/4 lit 1/4 0 1 2 MILES — 1 05 0 1 2 KILOMETERS SCALE 1:24000 KERN COUNTY. CALIFORNIA, NORTHWESTERN PART NO. 38 � .. -•; \�LANE _ .... ,-.. AYdt�RA r,= � .. .. .. .. . , .�*'_ :. ' "` x" �' ,a •:rai - 't i. t.. 3.. ^.- Y- ` ,�•'� �t � � 5�-�`��` _vin i< y ��r _ \ 1 �s.t� El.�-. i.. '.iyi � .i et1. S T'v r- _ S'F 2 - ^ � ' sem- Zs. - ,"'lvY•'- ..hu - - - } - 3+ ` ST•t��= •- ��4i < 17# s ,- Esc, .'� 0► "''�.. �ec:� . 5. - .:r.•, _ _ :., • .mss.. ... {.__ .. -t - - �-{-,_ 4-. e -'� ^� •� _ :a , _ �--.:-:,_w,;r <,•-• .-: r_ r-. c _ �., - ': =_< .. .�.. art.. .,_a `•a _ � II - t=• .,, . :L- �-v_.+�-` - - - - _----�� `» �1 "'`s,� - "ter- :i--- - :.:r.. a - '� •�`.-. 7`- - -� Y •�=127, - x€cs , _ b - �_ ,'•-,mac',`, a <�.x - _C` �� may,, 127 - �� `ta"sii" CQ`c _.st.- i - .••,3- .'arm �- tY 1'r•.. : C:;-- Y'.� �:i4i-.-�. _ - rs C.,' r--�N, y �''� �i. � 5`�`,%'.'-. '_.��� - �c .._r�-"=ti`� a�x;�r ., > ,...� :4�t: - �u�'f.1�-. - ` �� - _ .-3<•- '�-.: lc •i% _ _ -dl' ,i`ra�. a- F ..._ - . F=-� ;mss h ,:s�t<. :.`a Vii• S c=' ^='w"'. p ,;'.y. ��.z�� •'. '� +� *V-2 - s 7 .-4 ::�.: _��,��•: .;;n Y... ,.;t�� zr-._� ... _L'x� _y -, , .�"> .... T,. z ,,'� i ♦ .i _ �__. S3 4 r.� tee.. ••_,>< .-.. 'F .',>-F-ti• `.Yi- 1175 ,t�7-. -t- - L� .,,r. �-. , E'x - o- -•a,r_:_-+• •>_•. _ _ ._ t- ,.: r::=e:>=• is <: _ ;_, s s` s. 1 -au - v,...,:- ♦ `� � r pq.�� £ � sir s ' 7. �•` _� a� r s �-� a. x= 'g.. 1.' �-,hem a: .Hi :a'�r - - , -..: , �� ,.._ .. ,t. '. .. ;.... .. _a'i=--E'r' >4.._:- 5.' 'rte �`#� sty`- fig:. `€-,'y.�-Fa _ � -. �.� is,_ .-;y a'F �t_, - -.. -.',., ✓-'- Imo, _ tf.�4 ) 7',>t moi?' :.: - ) _ - �q _k - ,�. � `-�-yk� -• f `"`� 'i0:- .. J,-. '� T J.Y 4�: _ i.,:c.� >4 � i L. _ � •,�. :sr�•` 35z'.- - _ " - f:E' .,-,atif .�- � _.. }.� ,-•tr`�a�f==-• `S.,`;.�i. F _ _ ._>. - �" ` - - .. �<Ft - �-a: .,`�^ - a•J� �t, s S. 0. Z 1 j 'z}, ;ti - -f. 3sr — ' _: - {fya "_ _ .t.' :-�. »: `�^ y .. c- � _ .� 174....- '�� .,__ ,— _,._. _,_t.. - �,.x3.h� ,� - -. 3�'.f.-. ;Y � - �, . tr:. - '.. _-._ ,. ,• -.a,.. h .. �... .. .>r xS+ n -ase ..<.. �i3y, `t. w3 -r� 'J, ss-�-.f•. __ �- - zc '-' - - - ..a-�- �K'r: ^:t EF;R-:$rT*� .�' .•= � ,�_ i i2• - ', _- `,- ..1+43.. ._-: F. -f �.- -_z �.. ____ -`?4.- �&'. S t 1 - - < - 7 , - xf: '_ate`= 6..,�'- *, 127 t•T� �4v y � - f4�. ' '�-�"iy - _ _ �i �, _ - °_t = F- ��_=..i 1 174 ti 174 - =`✓- y'�a�r•�a. _ >.t .y -;' '"'3-'s 'a,�,�`* ^• F.�, i_: _ 'f<< - '" _ _ '1,� .a: _ .;. 174 - .moi k'`.-` - _ _tis-' ;r ,3 -- - = : _ 127 . � _i27. 17 .-g. 4 127 `i 174 ?moi ;2 4 } _ • { , _ ; x mom, -,;4. x - \ 5, r ,,n s• `iia • ` DOZEN�40 1•..' _ e-, _s _ Ate'.- '�i rt ,.r :Lr ^� .3 - �- ::.: .... {.t -..mom, .. ,-_ r. _ _.i :.. .: . ,.. -�. - - .p•t'r -ai. .. si •- - _-_ { � .�._: - t - .- '?' _.-...� moi• '!- - ___-�<� ;f:'• E? .� . .`_,� _. `e: x� - - f -"Y". 174 1. - an a ti . S ; 127 �•` > - - -�- - >-�.n ,� _ - arc.• ,��'-1� • S - - This soil survey map was compiled by the U.S. Department of Agriculture, Soil Conservation Service, and cooperating agencies. Base maps are orthophotographs prepared by the U.S. Department of the Interior, Geological Survey, from 1976. 1977, and 1978 aerial photography. Coordinate grid ticks and land division corners, if shown, are approximately positioned. 1 3/4 lit 1/4 0 1 2 MILES — 1 05 0 1 2 KILOMETERS SCALE 1:24000 KERN COUNTY. CALIFORNIA, NORTHWESTERN PART NO. 38 t 297 <ern County, California, Northwestern Part TABLE 15.—'10 ; nt on Risk o corms777 I I Soil name and 1Hydro- logic 1 Frequenop� of. -77 ,Depth th{Hardness Depth Thick- > �; ;;V ntsa DPnI_ (Uncoated (Concrete I map symbol { { x ness steel u floodin I n I { C { Rare 3. 'Perched Jan -Decd >60 i --- i --- --- IHigh ----- ILOw. 124----^----------I { { I(i J Buttornrillow ( I I ( IRAM------ { II >60 _-- Moderate Low.I>6.0 125---------------{A i I Cajon I { I I I { (Moderate I 126 ---I A INone------I >6.0 1 >60 I --® (Low. Cajon Cajon 1Mode rate iTow .. -- - --- Moderate. 128--------------- I D INone------{ >6.0 --- I { ®®® >60 --- I IHigh- { . Capay I I 1 I I I { I 1 I 129*: I 1 >6.0 I --- I - -- 20-40 Soft I --- I --® IHigh-----IHigh. Carollo---------- I D INone------I --- I I -_- High -----{Moderate. Twisselman------- ID None ------ I . 1 1 I >60 I { I { 130, 131, 132--®--1 B INone------ 1 >6.0 --- I I -®- I i >60 --- I I { --- --- { IHigh-----Low. ( Chanac { INone------) I --- { --- 1 >60 Isoft I --- I --- 1 I ILow. IHigh----- 133---------------I D I >6.0 I I I I i Choice I { { ( I I I I 134, 135 ---------- I B INone-----_1 ___ I >6.0 1 I -__ I >60 I --- I I --- I --- High----- Low. { J Cuyama I I I I I r 136*: I -----I B I INone------ I _ >6.0 I - _ I I __ I I >6o I I ®® I { IHigh ----- (Low. { LJ Urban land. { I II IHigh----- ILOW Delano -----------I B INone------ 1 >6.0 I --- I ___ i I I >60 I--- I I ___ I . igh®----II Low. High -- 137-----------__-- D INone_____ >6.0 >60 --- 8-20Thick 1I 11I II I I I Cymric 1I 138, 139---------- I B iRare------ >6.0 >60 II --- ___ IHigh-.----ILow. II l Delano ----- ILow.>60 140 --------------- IB INone ------ >6.0 -- --- --- I I High I { Delano I I I I I >6.0 --- { I --- I I ( >60 I --_ I --- I --- { High-----ILow. II 1Delano ®--------I B I Rare------{ I I I I { { I { I { I 142 *: I ----- B Delano------ I I (Rare_ { ___ -----I >6.0 I>60 I I 1 ---I--- 1 I I I--- I--- I I I High----- I Low. I { Urban land. IIH i �. 143 ---------------I C INone___--->6.0 --- >60 igh-^--- Low. �-� I { { Delano Variant I I I INone------ I _17-20IHard { ___ i Low. I1 High ----- ({ ---D >6.0 I 1144 I Delgado I C (Rare ------ I >6.0 I --- 1 --- I >66 I --- 120-40IThin IHigh-----(Low. -r'.. 145 Driver _: See footnote at'.end of table. `hcf i Kem County, California, Northwestern Part #� 4 r� 288 TABLE 15. _ s o corms on Soil name and iHydro-i Frequencyi map symbol i logic{ ofgro.Depth 41 T .b�{Uncoated !ts (Concrete { u flood in _ '.; _ '�s€ ,. mess steel 20-40{Soft i i (High -----'Low. 168, 169- -i C =None--- --� Kettleman { {None---"- { { --- {High----- Low. 170--------------") B { >6>.0 �-- f 20-40{Soft --- Kettleman 171*: 4 High- ----� Kettleman-------- i B iNone------i >6.0 { --- _ --- 20-40Softi --- i --- (Low. { Delgado ---------- D { {None------) ( { >6.0 { -- { { ( --- { 7-20 Hard { --- { --- { { { High -----{Low. { ( Rock outcrop. { 172*, 173*:� ----------- C { ;None ------i >6.0 iHard -__ 20-40i- {iHig-----1Low . Kilmer { Hillbrick - D { ( None - >6 0 1 ___ { --- {10-20{Hard __- { --- (High----- {Low. 175, 176 B ------ i >6.0 i --- --- >60 i --- --- -^- iHigh ----- iLOW. 178 -----177-----i iNone { 79 { B {Rare-= -{ >6:0 >601High ®High " 180*: Kimberlin ------- i B iRare------i >6.0 i ___ i ®_® i >60 i ®__ i ®_® i --- iSigh-----iLow. Urban land. { { { { ( { { { ( { { J Cajon ------------- I A lRare ------ i >6.0 � -®_ � ®_® � >60 � ®®_ i ®__ I ®®_ --- {Moderate iLow. iHigh----- iLow. 181 --------------- C { _____ R,�_ { ( 3.0-6.0 Perched { Jan-Deci >60 i --- i { i r-- j' Lerdo 182*: { { { { { { ( { { i >60 i--- i ®__ i ___ { { High ----- iLow :. i Lerdo, i C iRare------i >6.0 i--- i--- . saline -alkali { { { { ( { { { { { { ( C Lerdo------------{ {Rare------{ { { >6.0 { -- { { --- { >60 { --- { --- { --- { { I {High -----{Low. { { 183---------------{ D iRare------i >6.0 i --- i --- i >60 i --- i --- i --- iHigh----- lRigh. Lethent { { { { { { { { i{High- 184---------------i C iNone------i >640 i __- { --_ ; >60 i --_ { ----{{Low. Lewkalb 185*< Lewkalb-----___®_i C iNone------i >6.0 i ®__ --- i >60 i --- i --- { -- ---_{ (High- {Low. --- _ --- --- iHigh ----- iLow. M11ham----------- i B iNone------ >6.0 i --® i _®® i >60 i { (None ------>6.0 --- ii--- ii>60 iiHigh-----Low. i 1 Kimberlina-------B 186------i------D ii !None ------ i >6.0 --- --- 6-20 Hard --- i High ----- iLow. Lodo Variant { 187---------------i C 'Rare ------i >6.0 i ®__ i --- >60 i --- i --- i --- 'High -----{Low. Lokern 1 i See footnote at end of table. M M. Y Stantec APPENDIX Jul. 17, 06 4.2 APPENDIX 2: CITY OF BAKERSFIELD URBAN RUNOFF COEFFICIENTS AND INTENSITY VS. DURATION CURVE (STANDARDS D-1 & D-2) CITY OF BAKERSFIELD RATIONAL ME -MOD URBAN RUNOFF COEFFICIENTS (C) TYPE OF DEVELOPMENT (Includes Street Area) (c) Sandy.. soil HeavySoil R-1, 6,000 S.F. 0.42 0.38. 0.44 0.39 R-1; 7,500 S.F. 0.34' 0.34 R-1, 10,000 S.F. 0.27 0.27 R-1 15,000 S.F. 0.55 0.58 R-2 0.80 0.80 R-3; R-4; M -H 0.90 0.90 cmVercial 0:80 0.80 industrial. 0.15 0.22 Park's Undeveloped Grasslands, Type A Soil 0.15 Grasslands, Type B Soil 0.25 Grasslands, Type C Soil 0.35 0.45 Grasslands, Type D Soil SURFACE TYPE (For Composites) Pavement, drives and roofs 0.95 Backyards 0.05 Sandy Heavy Lawns & Landscaped Areas Soil Soil Flat Slope, 2% 0.10 0.17 Average Slope, 2% to 7% 0.15 0.22 Steep Slope, 7% 0.20 0.35 Sandy Soils - SCS Group A & B Soils Heavy--S6ils - SCS Group C & D Soils Soil groups for area in question can be determined by using Section 2.11 or by referring to the General Soil Map on file with the County of Kern. Dl:RAT.MET RATIONAL t•' MOD URBAN RUNOFF COEF ma Stantec 1) F1 A I N A G E S1"" �,* KU Y' CITN' Of BAKERSFIE-LI-) APPENDIX Jul. 17, 06 V = 0.15 SCA PER CITY OF BAKERSFIELD ENGINEERING AND SUBDIVISION DESIGN MANUAL 1 A - WATERSHED AREA (ACRES) 2.74 C * 0.388 V - RETENTION VOLUME (ACRE-FEET) 0.16 EAREA 2 1.17 0.388 0.07 3 2.30 0.388 0.13 4 0.36 0.388 0.02 5 1.38 0.388 0.08 6 1.26 0.388 0.07 7 1.46 0.388 0.08 8 2.76 0.388 0.16 9 2.92 0.388 0.17 10 5.55 0.388 0.32. 11 3.06 0.388 0.18 12 0.20 0.388 0.01 13 3.76 0.388 0.22 14 3.31 0.388 0.19 15 1.67 0.388 0.10 16 1.31 0.388 0.08 17 1.15 0.388 0.07 18 1.06 0.388 0.06 19 2.49 0.388 0.14 20 4.34 0:388 0.25 21 2.57 0.388 0.15 22 0.76 0.388 0.04 23 5.34 0.388 0.31 24 2.80 0.388 0.16 25 4.00 0.388 0.23 26 6.50 0.388 0.38 27 1.48 0.388 0.09 28 0.11 0.388 0.01 29 1.37 0.388 0.08 30 1.27 0.388 0.07 32 2.15 0.388 0.13 33 0.53 0.388 0.03 TOTAL VOLUME = 4.26 * RUNOFF COEFFICIENT 0.388 IS THE INTERPOLATED VALUE BASED ON TRACT 6557 AVERAGE LOT SIZE OF 7206 SQUARE -FEET PER CITY OF BAKERSFIELD STANDARD D-2. BASIN BOTTOM AREA= 0.14 ACRES WATER SURFACE AREA = 0.52 ACRES INTERMEDIATE AREA = 0.33 ACRES MAXIMUM WATER DEPTH = 13.55 FEET FREEBOARD= 1.70 FEET VOLUME OF THE BASIN = 4.47 ACRE-FEET SUMMARY: PROVIDED RETENTION BASIN HAS THE REQUIRED CAPACITY (4.47 ACRE-FEET) FOR THE PROPOSED RUNOFF VOLUME (4.26 ACRE-FEET) i M. 1 M A G E U! 1) Y F 0 R T R A G'T 6557 CI'TY C)F BAKEIRS.4 NE.-ID APPENDIX Jul. 17, 06 STANTEC v:\projects\270054.00\drain\drainage reporL_tr6557.doc 4.16 I. • DESIGN STANDARDS -11 -1 -1 100 YEAR VOLUME REQUIRED =4.26 ACRE—FEET TOP OF SUMP ELEVATION=351.50 PROVIDED VOLUME=4.47 ACRE—FEET HIGH WATER ELEVATION=349.80: MAXIMUM WATER DEPTH=13.55 FEET BASIN BOTTOM AREA -0.14 ACRES FREEBOARD= 1.70 FEET WATER SURFACE AREA=0.52 ACRES BOTTOM OF SUMP ELEVATION=336.25' TOTAL SUMP LOT AREA=0.87 ACRES l Q PERIMETER WALL �`' 242' "` _ACCESS ROAD s 20' 11 12' I cs� I 's 211 ' 62s I I � TOP OF BASIN I a m W s�sBOTTOM OF BASIN No 2:1 ~IN I 2:1 `� /HIGH WATER LEVEL 68' _ I N Z 110 I (a I ��' 140 v q G,c 12' 13' i I ESS 01 1 41\\ 242' ACCESS ROAD JULY, 2006 2025005400 Stantec Consulting Inc. Notes Client/Project Z ,, STANDARD PACIFIC HOMES 1400 18th Street TRACT 6557 a RETENTION BASIN EXHIBIT � Bakersfield, CA - "' 93301 1' Figure No. N Tel. 661.616.0000 Title StantM Fax. 661.616.2400 RETENTION BASIN EXHIBIT www.stantec.com SCALE: NTS A\ t� I. • DESIGN STANDARDS -11 -1 -1 100 YEAR VOLUME REQUIRED =4.26 ACRE—FEET TOP OF SUMP ELEVATION=351.50 PROVIDED VOLUME=4.47 ACRE—FEET HIGH WATER ELEVATION=349.80: MAXIMUM WATER DEPTH=13.55 FEET BASIN BOTTOM AREA -0.14 ACRES FREEBOARD= 1.70 FEET WATER SURFACE AREA=0.52 ACRES BOTTOM OF SUMP ELEVATION=336.25' TOTAL SUMP LOT AREA=0.87 ACRES l Q PERIMETER WALL �`' 242' "` _ACCESS ROAD s 20' 11 12' I cs� I 's 211 ' 62s I I � TOP OF BASIN I a m W s�sBOTTOM OF BASIN No 2:1 ~IN I 2:1 `� /HIGH WATER LEVEL 68' _ I N Z 110 I (a I ��' 140 v q G,c 12' 13' i I ESS 01 1 41\\ 242' ACCESS ROAD JULY, 2006 2025005400 Stantec Consulting Inc. Notes Client/Project Z ,, STANDARD PACIFIC HOMES 1400 18th Street TRACT 6557 a RETENTION BASIN EXHIBIT � Bakersfield, CA - "' 93301 1' Figure No. N Tel. 661.616.0000 Title StantM Fax. 661.616.2400 RETENTION BASIN EXHIBIT www.stantec.com SCALE: NTS 'I VARIES VARIES . 7 MIN. 1Y 30,5• 30.5' 1 12' I IF If MICHAIN N. MIN MIN FENCE CMV BLOCK WALL t � / PCD BOTiCI , < �'` ` � • SEC71ON a-8 VARIES N. T.S APoES 7 MIN. 12' 30.5' 30.5' 12, MN 7 MIN. jl CHAIRLINK MIN i FENCE am LINK 1 FENCE �/ 2 7LW OF PPD Lt_SOZ — 2 • . ------------------------- --- IM NKW? MW (SAM ,� r �� Z/ FCD eonw agg --- SECTION C -C ATS -A m 1 � MOUNTAM FUDICAE WE z .::• j I I BOTTOM ELEV. 336.25' ^p ^ 4 1p J iv z BASIN ACCESS PATH y — J�i WAY —�— — — — — — ,1 3 SUMP INFORMATION TOP 351.50 WS 349.80 BTM 336.25 CAPACITY REQ. 4.26 AC -FT CAPACITY PROVIDED 4.47 AC -FT TYPICAL N. T.S. * PER C.O.B. DETAIL S-9 08/2006 - 2025005400 Client/Project fs a Stantec Consulting Inc. STANDARD PACIFIC HOMES N < = •1400 18th Street TRACT 6557 Bakersfield, CA N 93301 Figure No. 1 Tel. 661.616.0000 Title SWntK Fax. 661.616.2400 DRAINAGE REPORT 0 www.stantee.com SUMP DETAIL . im M. 0 I=. APPENDIX Jul. 17, 06 4.5 APPENDIX 5: CITY OF BAKERSFIELD STANDARD DRAINAGE STANDARD CHAIN LINK FENCE AND STANDARD CHAIN LINK GATES STANTEC v:\projects\270054.00\drain\drainage report_tB557.doo 4.17 M— Carne, Cutoff �\ Fence cutoff at street comers shall conform to the reautremerin of the Citv Traffic Eno neat. SIV -Oesign Wolof Surface outlet ` Mme. :I situcxwa- W uNLE55 orAlc'1QwtSc SECTION A ® A ALl-O K/ 6.'n /Web min" to Angftf I - 1 •Ctrs! ElofL h. Pipe QQ *101 ®1 of u A PLAN 1A J NOTE- Location ondl number of drive and walk gates un fence b be detetmnad in the heb Iry the City Consirwct 6' high Choir - Liali C"Wower, Fane ria/ Redwood Slots of property lint, unless otherwise dtreeled by the City Engineer. 0D of Pipe . 2'-0" 3/8" by 2• Flof bar Minimum 3-0- ���I (Length -Pipe O.D.410") Weld bar to hinges. N;A'a REVISEb JUL �9 d of JUNE 6 1043 Galvontied . fAaMne Scutstrod Load Shields.bar ®Weld 1/2• Sari to Flat Bars ILtngfn a Pipe O.D.+10") _ at Too and Baton •- eereevse ELEVATION OUTLET Gutter JL-, .:EVERAL ` IT-cS: All work sham stall conform to the applicable sections of the current specifications entitled "Standard Specification. State of California. business and Transportation Agency. Department of Transportation".nand the following s'e0ie+ *.W""ons. LAYCIT AKtafRAL 6-D1TIOw NogT%; Drainage basso shall be a minimum of one buildable !at, fronting on a street, and having a shape and :ocatian acceptable to the City Engineer. . Landscaped park drainage basins shall not be governed by this standard. Basin site shall be deeded in fee to the C.-ty of Bakers. field. Side sluices dull not exceed 2:1 All eaposed metal in the outlet structure shall be hot dipped galvanized after fabrication. i Outlet structure shall be constructed with Class "A" (6 sack) concrete within 2 1/:" to S l/_" slump. Concrete shall Domain no additives unless prior written approval is obtained froa•the City Enginxr. Concrete shall be cured with a wnate pirxnted curing compound coaolring to Section 90--.016 of the Standard Specifications. ,;e pipe belts shall be placed in structure. Chain Link fence and gates shall conform to the spectfi- cations shown an City of Bakersfield Standard Drawings S -i0 and 5-11. All new drainage basins including area between fence 4 sidewalk shall be sterilized with a permanent sterilanc such as 1Nvar A. Additional treatment to the area berm t, fence and sidewalk shall be as directed by the Engineer. Application rate is twenty-five t251 pounds net acre. i representative ci the Parks Division shall, be un site at time of sterilization. Basin ca?acity shall conform to City of Bakersfield Pablit 4-:,rks Dersrtsent Design Poliev for Drairate. kE.L.-C. STANDARD r o' A I I il, a m s ss'IF.15 CITY OF BAKERSFIELD CALIFORNIA :..,...-.. ENGINEERING DEPARTMENT ti mei a T" Awarief - 1 � OM Pi , 2.2T ®/ hat ♦♦�♦,•�f�� f a* __ii°••• alai i e°e•.••i•Qi°epi °vee°e • •fii°° °• °°!y°ei♦•••e°�°••♦ •`•e � i>• ♦°O•� • •°•°O•i°. O•:: ♦ ♦ •♦• ♦ •�♦♦� �♦_� :°ii°i°.! s•♦•e°e •°e°i ~i�!�+ i•° a •°ii•% •• • f �I ����°*♦• •°•i°i � •�•i .�1►�L�♦ •�� •�•r �• — -•i°.!i!!�♦�i�� O °•°•s!s�s� °���Z�•i!est•°♦�1�°d•��%�w►i�%�ISi0i1C/r.��i`°w0•i♦i°i Q.' .�•-. �.. •�.'�1.r.4•v♦�K� .��e•re1Nr� w�4. �sArsr�•els-vLs'e'°'6"�G+_r�'A97h.?-$o_y_♦Zw NL 6ENERAI. NOTES: r MiR. Installation of fencing and gates shall be in accordance o the requirements of Section 88-4 of the specifications entitled "Standard Specifications, State of California, Department of Transportation", current edition. R 6" x'b" concrete curb shall be constructed under all fee Within City parks, a 6" thick x 9" wide curb shall be uses In either case a 1 1/2• clearance between the curbing and -7fabric shall be used. "' .� - •:•,• •.- Concrete shall be Class "R" t5 sack) wild shall be within 1/2" to 5 1/2" slump. Surface of concrete shall be trowelE Smooth, and brush finished. Concrete shall contain no *additives unless prior written approval is obtained from t City Engineer. Concrete shall be cured with a white pigrer •'• curing plying to Section 90-7.016 of the Stand Specifications. PC.C, w I Corner post shall be installed at all angles in fence line excess of 18 degrees. i'YPICI. ®�'iA1�. i End, and bate Frosts shall be braced to the nearest line post with galvanized diagonal or horizontal braces us CULVERT ENDW LLa5 sion members and galvanized 3/8" steel truss rod ek1 t t• ht used as tension membe NOTE - Soo is to H shalt vsid with 3 x S 9 fabric so cm0ructed that the Wats are eked ado positiW aid =n only with U" of tools. "at'" tWriam es or rues ag tamers Fabric shall be fastened to bate Frost, Terminal post or Corner Frost with 1/4" x 3/4" stretcher bar bonds at 8" on 'center. Fabric shall be fastened to lire post with fabric bonds spaced approximately 14" apart, and to last runner and bot tension wires with fabric bonds spaced approximately 24" apart. Chain link fence fabric shall conform to the specification ASTM designation: A 392, Class I. Subgrade preparation shall be constructed true to gratle an crass section with compaction of 85% tb_a depth of 0.50 f ♦ .. aaL.a STANDARD CHAIN LINK �. � s CITY OF BAKERSFIELD CALIFORNIA D- I? FENCING TABLE "EIGHT I l HEIGHT 2 HEIGHT 3 H 5' 6' to' DC Z'-6" 3'- 0" -d DL f -e Y-6" 3' -Cr T Pact 2 WCLU P 2 7/a"ILQ aak Pia 3 le 0.Q Gawk l4w w Pte, S" RI Fl 5.79 • / fl 7.58 a/ FL H cele"" p c°1•m" 1 7/a• ■ 1 5/or 2 w a Iva" 2 7/9' 02 ask pipe Liao Pact 2.70 6 /F1 4.10 i/ ft. g i J FL 1 we' 0A a P 2 3+i 0.Q Pip 2.T2 oJFt 3.85 61 ft 8 . 2 bM • Go". •I!M 0 Sawa. aW, Nesta xft"k Q Ta ad ®nes Kamttg4 T®® Mi bit h"6ww1 2 • " 1• Slits i NOTE - Soo is to H shalt vsid with 3 x S 9 fabric so cm0ructed that the Wats are eked ado positiW aid =n only with U" of tools. "at'" tWriam es or rues ag tamers Fabric shall be fastened to bate Frost, Terminal post or Corner Frost with 1/4" x 3/4" stretcher bar bonds at 8" on 'center. Fabric shall be fastened to lire post with fabric bonds spaced approximately 14" apart, and to last runner and bot tension wires with fabric bonds spaced approximately 24" apart. Chain link fence fabric shall conform to the specification ASTM designation: A 392, Class I. Subgrade preparation shall be constructed true to gratle an crass section with compaction of 85% tb_a depth of 0.50 f ♦ .. aaL.a STANDARD CHAIN LINK �. � s CITY OF BAKERSFIELD CALIFORNIA D- I? •/ • X ```� ..� -1 sm" 0 D Gely. Pipe i 2.72 o/ Ft, � ' ii2onbl w I Fabric - 9Gov ; X. broce wish Noss red: afNr weaving, i 1 krwawill top end 1111 boltom. I l offer' Neighd - SB' a- 70" / •', . ,'/.' / WALK GATE Hama - I T/® 0-P. kmAkbed I" t Gar. Pipe ,$r(NGLE 2.72 eifoa ` bottom ' .; Wk M - 4 fee b�with >. lock •� �� wignt - 7 fee , / �,, 17M7QQ Gov. Pipe Horizontal or Closs'B" P.C. cone. 272 a /foot 1. i Gate Post - 2 7/d" QQ • brute' Singh "U fork leek t• o. w" him" r ; s with lock \ . • ® ; Clots"B"PC. Cone. t i -Gok posts - 3 Ve 00. r Gak Pipe L- 414114" M� t 10 CFOOT pw FENCE c PE®EQJTR1bh1N Vit I G rFobrit-9 GolW,2"wwsh./nhanized after weaving, knuckled top and ibottefrt / Fabric - 9 , Y math, 90"rund afNr weaving, i 1 krwawill top end •, boltom. I 'CGWrJ F MIX C.dTF Width- 4 feet > Neighd - SB' a- 70" . •/ Hama - I T/® 0-P. i Gar. Pipe 2.72 eifoa ` glrkAfork ; b�with >. lock t f •K / Closs'B" P.C. cone. .. 1. i Gate Post - 2 7/d" QQ Golv. Plot t• o. 5.TS a / fool s Horizontal or' trace with Huss met p t Mth GENERAL NOTES, Subgrode prspaotion $halt be* eonatruded true to grads and cross section with compaction of 05% to o depth of 0.50 feel. Concrete $hall be Class '8' (S sack) and shell M within 2 V•2® to 5 1/2" Slump, Surface of concrete shall be troweled smooth. and brush fimstwd. Concrete shod contain no additives unless prior written approval is obtained from the City Engineer. Concrete shelf be cured with a white pigmented curing compound complying to Seelion 90- 7010 of the Standard Specifications, End, Caner and Gott Post$ shall be braced to the nearest :int post with galvanized diogonel at horizontal brocts used at compression members and golvannzed Va" steel truss rods with turnbuckles or truss tighteners used as tension member. When redwood suburban screen is regiiired U snail be used with 3s 5-9 gouge tobnc $o Constructed that the slots are tock®® into position and con only be removed with use of fools Frames shalt be mode with fittings or wttdtd, with welds ground smooth, and regolvonhzed. f - 2 Tle Pipe 1/fool ♦♦ Cio$s "®" FC. Cant. �� Chain -Link fonts fabric'sholl conform to the specifications of ASTM Designation- A 392, Class L Installation of fencing and gotei shall be in accordance with the requirements of Section 80-4 of the Standard Specifications. State o California. Buslnass and Tronsoortation AWCV. Jsportmsnt of Transpwta current edition, and these 6eneral Notes: Curbing as specified by C.O.B. Standard Drawing S-10 shall be eonlhnu under Boles. R �'ay i S 17) JU L '6'S NO STANDARD CHAIN LINK GATES CITY OF BA►KERSFIELD r mitts CALIFORNIA .S e+r, ENCcIM ltd IPA.KY'PAEM' 17- 1-4 iz M. R E- T ',J FOR 1"RACT 7 (TF)" ()�rz APPENDIX Jul. 17, 06 4.6 APPENDIX 6:. DRAINAGE TO TRACT 6387 STANTEC v:Xprojects\270054.00\drain\drainage reporUr6557.doe 4.18 DRAINAGE TO TRACT 6387 V = 0.15 ICA PER CITY OF BAKERSFIELD ENGINEERING AND SUBDIVISION DESIGN MANUAL DRAINAGE TO SOUTH TRACT 6387: AREA A - WATERSHED AREA (ACRES) C V - RETENTION VOLUME (ACRE-FEET) 31 0.68 0.388 0.04 34 1.00 0.388 0.06 TOTAL VOLUME = 0.10 * RUNOFF COEFFICIENT 0.388 IS THE INTERPOLATED VALUE BASED ON TRACT 6557 AVERAGE LOT SIZE OF 7206 SQUARE -FEET PER CITY OF BAKERSFIELD STANDARD D-2. SUMMARY: PROVIDED RETENTION VOLUME OF TRACT 6387 IS 5.78 ACRE-FEET AND REQUIRED VOLUME IS 4.54 ACRE-FEET PER THE CITY OF BAKERSFIELD APPROVED DRAINAGE STUDY FOR TRACT 6387. THEREFORE, THERE IS ENOUGH VOLUME TO RETAIN THE DRAINAGE FROM TRACT 6557 IN THE RETENTION BASIN OF TRACT 6387. STANDARD PACIFIC HOMES HAS WRITTEN A LETTER ACCEPTING THE 0.10 CFS RUNOFF FROM TRACT 6557 WOULD CAUSE NO PROBLEM FOR TRACT 6387 FROM A DRAINAGE STANDPOINT. THE LETTER HAS BEEN SUBMITTED TO THE CITY OF BAKERSFIELD ON 08/22/2006. F=. M. 1 Stantec 066!960 E1.1,j D Y CITY APPENDIX Jul. 17, 06 4.7 APPENDIX 7: TRACT 6557 RETENTION BASIN SOIL ABSORPTION EVALUATION 131 I IMPORTANT NOTE: THE RETENTION BASIN IS GOING TO BE OVEREXCAVATED TO A DEPTH OF 21 FEET BELOW EXISTING GRADE AND BACKFILLED WITH CLEAN COHESIONLESS SAND CLASSIFIED AS SP OR SW IN THE UNITED SOILS CLASSIFICATION SYSTEM TO ENSURE ADEQUATE PERMEABILITY FOR WATER TO DRAIN IN SEVEN DAYS OR LESS. THIS CONCEPT IS EXPLAINED IN THE FOLLOWING SOIL ABSORPTION EVALUATION DATED MAY 8, 2006 BY KRAZAN ASSOCIATES INC. IN MORE DETAIL. UPON COMPLETION OF THE CONSTRUCTION OF THE BASIN, THE SOILS ENGINEER SHALL PROVIDE THE CITY WITH WRITTEN VERIFICATION THAT THE SPECIAL REQUIREMENTS IN THE FOLLOWING SOILS REPORT HAVE BEEN MET. SOIL ABSORPTION EVALUATION PROPOSED DRAINAGE BASIN —TRACT 6557 SWC BERSHIRE ROAD AND STINE ROAD BAKERSFIELD, CALIFORNIA PROJECT No. 022-05218 MAY 8, 2006 Prepared for: MR. BOB BRANDT STANDARD PACIFIC HOMES 1,500 HAGGIN OAKS BLVD., SUITE 101 BAKERSFIELD, CALIFORNIA 93311 Prepared by: KRAZAN & ASSOCIATES, INC. GEOTECHNICAL ENGINEERING DIVISION 2205 COY AVENUE BAKERSFIELD, CALIFORNIA 93307 (661) 837-9200 FESSlJARo O,y� No. 2698, Tu Expires Iuae 30, 2006 T t y a; �E& ASSOCIATES, INC. GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION May 8, 2006 KA Project No. 022-05218 Mr. Brian Grant Standard Pacific flComes 1500 Haggin Oaks Blvd., Suite 101 Bakersfield, California 9331 1 RE: Soil Absorption Evaluation Proposed Drainage Basin —Tract 6557 SWC Bershire Road and Stine Road Bakersfield, California Dear Mr. Brandt: i In accordance with your request, we have completed a Soil Drainage Evaluation for the proposed drainage basin for the above -referenced site. 'The results of our investigation are presented in the attached report. _ Ifyou have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (661) 837-9200. a Respectfully submitted, ZAN &c ASS TES, INC. I � �ESSfa Dave R. tarosz, l SOW ? ,. Managing Eli eer RCE No. 60145/RGE N w No.2658 rn (^ Expires dune 30'. 2.006 a DRJ:ch/da ,Y ..eL+OF - j, F ' With Ten Offices Serving The Western. United States 2205 Coy Avenue o Bakersfield CA 93307 • (661) 837-9200 • Pax: (661) 837-9201 0-205219 Soil Absmrtiun EvalmOon ii & ASSOCIATES, INC. GEOTECHNICAL ENGINEERING ® ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION TABLE OF CONTENTS INTRODUCTION ...................................... .................... ............................................. ............. ........................... I ........... .... I SOIL PROFILE AND SUBSURFACE CONDITIONS.............................................................................................1 GROUNDWATERCONDITIONS...................................................................:...............................................................2 PERMEABILITYTESTING......................................................................................................................................2 DRAINAGE...................................................................................................................................................................3 SITEPREPARATION......................................................:...................................................................:............................3 FEASIBILITY OF ON-SITE SOILS FOR USE AS ENGINEERED FILL..................................................................4 UTILITYTRENCH BACKFILL......................................................................................................................................5 PIPEBEDDING AND ENVELOPE.................................................................................................................................5 COMPACTEDMATERIAL ACCEPTANCE.................................................................................................................5 TESTING AND INSPECTION....6 ..................................................................................................................................... LIMITATIONS...................................................................................................................................................................6 SITEPLAN.........................................................................................................................................................8 LOGS OF BORINGS (X TO 3).................................................................................................... Appendix A With Ten Ofiiees Serving The Western United States 2205 Coy Avenue o Bakersfield CA 93307 0 (661) 837-9200 o Fax: (661) 837-9201 02205218 ScQ Absocp0oo EvNwtiooAoc KraZan & ASSOCIATES, INC. May 8, 2006 GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION KA Project No. 022-05218 SOIL ABSORPTION EVALUATION -� PROPOSED DRAINAGE BASIN — TRACT 6557 SWC BERSIIIRE ROAD AND STINE ROAD BAKERSFIELD, CALIFORNIA INTRODUCTION This report presents the results of our Soil Absorption Evaluation for the proposed drainage basin to be located within the southwest corner of the proposed residential development identified as Tentative Tract No. 6557 at Stine and Bershire Roads in Bakersfield, California. Krazan & Associates, Inc. performed a Preliminary Geotechnical Engineering Investigation for the above -referenced residential development dated February 28, 2006 (KA Project No. 022-05218). A total of 3 exploratory soil borings were recently advanced within the proposed basin location to evaluate soil conditions and soil absorption characteristics of the subsoils. In addition, 3 permeability tests were performed from soil samples obtained from beneath the proposed drainage basin bottom, to evaluate the soil absorption characteristics. A site plan showing the approximate boring locations is attached. A description of the field investigation, boring logs, boring log legend, along with the laboratory test results, are also attached. SOIL PROFILE AND SUBSURFACE CONDITIONS . Based on our findings, the subsurface conditions encountered within the area of the proposed basin appear typical of those found in the geologic region of the site. In general, the surface soils consisted of i 6 to 12 inches of very loose silty sand. These soils are disturbed, have low strength characteristics, and are highly compressible when saturated. Below the very loose surface soils, approximately 16 to 17 feet of loose to dense silty sand or sandy silt J were encountered. Field and laboratory tests suggest that these soils are moderately strong, slightly coin pressible,.and have low to poor absorption characteristics. Below 17 to 20 feet, predominately silty sands and sands were encountered. These soils occasionally contained minor lenses of sandy silt, Field and laboratory tests suggest that these soils have moderate to good absorption characteristics. Representative soil samples had a coefficient. of permeabilityof 2.0 x 10'2 cm/sec to 5.1 x 10-2 cm/sec. These soils extended to the termination depth of our borings. For additional information about the soils encountered, please refer to the logs of borings in Appendix A. With Ten Offices Serving The Western United States 2205 -Coy Avenue • Bakersfield CA 93307 • (661) 837-9200 • Fax: (661) 837-9201 022D521 B W1 AbuxpOon EvaloaUmdoc KA No. 022-05218 Page No. 2 5 GROUNDWATER CONDITIONS Test boring locations were checked for the presence of groundwater during and immediately following the drilling operations. Free groundwater was not encountered. It should be recognized that water table elevations may fluctuate with time, being dependent upon seasonal precipitation, irrigation, land use, and climatic conditions, as well as other factors. Therefore, water level observations at the time of the field investigation may vary from those encountered during the construction phase of the project. The evaluation of such factors is beyond the scope of this report. BASIN SLOPE STABILITY Cq According to information provided by Santec Consulting Inc., the edges of the proposed basin will consist of slopes approximately 15 feet high. Maximum proposed slopes along the edge of the basin are proposed to be 2:1 (horizontal to vertical). The high basin water level is anticipated to be 13.55 feet. The stability of the proposed basin slopes were analyzed using Geo Slope computer software. This program uses the Bishop's Simplified Method to determine the factor of safety for slope stability. Slope stability analysis was performed under static conditions. Angles of internal friction of 31 and 36 degrees were used in the slope stability analysis. Cohesion values of 50 to 150 pof were used in the slope stability analysis. A high basin water level of 13.55 feet was used in the slope stability analysis. Factors of safety on the order of 1.6 under static conditions were calculated for the proposed slopes. The slope stability analysis indicates that the proposed slopes are relatively stable under static high water level conditions. Therefore, it is not anticipated that slope stability will affect the proposed development if the proposed 2:1 (horizontal to vertical) maximum slopes, are constructed properly. The proposed slopes should be constructed in accordance with the recommendations of the above -referenced Geotechnical Engineering Investigation. PERMEABILITY TESTING Three permeability tests were performed on undisturbed soil samples collected from depths of 20 to 31 feet below existing site grade. The permeability tests were performed in accordance with ASTM Test Method D2434. The test results are as follows: $orang.o.::.;bepth..Cfcet :.:'_;-::::::::.Coefficlen�t:�uf:P r ea ili ::::::; E:;. cm/.second ••-•• ;:..::•;.::..::.::oil - B2a 20-21 5.1 x 10-2 Sand (SP) B2a 25-26 2.0 x 10-2 Sand (SP) B I a 30-31 4.4 x 10'2 Sand (SP) Krazan & Associates, Inc. With Ten Offices Serving The Western United States 022O521a Sotf ABsotpdoa EwWMio.da KA No. 022-05218 Page No. 3 DRAINAGE The proposed drainage basin is still in the design phase. It is estimated that the maximum volume of water to be retained in the basin is 4.53 acre-feet. It is understood the basin will have a bottom. area of approximately 6,272 square feet. The surface area at high water level is approximately 22,870 square feet. It is anticipated that side slopes will be constructed at 2:1 (horizontal to vertical). it is anticipated the high water level will be 13.55 feet above basin bottom. Permeability tests were performed on the soils at depths ranging from 20 to 31 feet. These soils had coefficients of permeability ranging from 2.0 x 10'2to 5.1 x 10''-em/sec. Based on the proposed inflows, subsurface soil conditions, and provided the drainage basin has a minimum bottom area of 6,272 square feet and extends to a minimum depth of 15 feet below existing site grade, it is anticipated the basin will drain within 7 days provided the recommendations in the Site Preparation section of this report are followed. SITE PREPARATION General site clearing should include removal of vegetation and existing utilities; trees and associated root systems; rubble; and any loose and/or saturated materials. Site stripping should extend to a minimum depth of 2 to 4 inches, or until all organics in excess of 3 percent by volume are removed. Deeper stripping may be required in localized areas. These materials will not be suitable for reuse as Engineered Fill. However, stripped topsoil may be stockpiled and reused in landscape or non-structural areas. Within areas to receive fill, following stripping operations, the upper 6 inches of soil should be excavated/scarified to a depth of 6 inches, worked until uniform and free from large clods, moisture - conditioned as necessary, and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. It is recommended that the new fill to be placed within the slope be benched into the slope. The bench should occur.at every lift and extend at least 4 feet into the existing slope. Any buried structures encountered during construction should be removed in accordance with the recommendations of the Soils Engineer. The resulting excavations should be backfilled with Engineered Fill. in order to dispose of the water, within the required 7 days, mitigation measures are required. it is recommended that the proposed drainage basin be constructed into the sandy soils encountered at the site. it is recommended that the bottom of the basin is over -excavated to a depth of 21 feet from original grade. The side slopes of the over -excavation should be excavated at 1:1 (horizontal to vertical) or lower from the bottom of the basin. The resulting excavation should be backfilled to finished basin grade with clean sand (less than 5 percent passing the No. 200 sieve). The sand should not be compacted to more than 85 percent of maximum density based on ASTM .Test Method D1557. It is further recommended that a representative of our firm inspect the excavation operation to verify soil Krazan & Associates, Inc. With Ten Offices Serving The Westem United States 02-10521 i Suil Abwrptim Evaluation KA No. 022-05218 Page No. 4 conditions below the bottom of the basin. The estimated soil absorption factors presented in this report are based on clear water and a factor of safety should be incorporated into the design of the drainage basin to compensate for soil clogging from water impurities. The long -terns absorption rate is highly dependent on the quality of infiltration water and the drainage basin maintenance. To maintain an adequate absorption rate, a maintenance program will be required. Annual maintenance should include the following: Annual removal of the top 1 to 2 inches of sediment collecting on the surface of the basin. This will help removal of the silt and clay sediment from accumulating from the surface and reduce the potential of silting (clogging) the upper soils within the pond. 2. Vegetation within the basin should be stripped or mowed yearly and removed from the basin site. The vegetation shall not be disced within the basin soils. Discing of organic material will reduce the upper soils permeability. The upper soils, during wet winter months become very moist due to the absorptive characteristics of the soil. Earthwork operations performed during winter months may encounter very moist unstable soils, which may require removal to grade a stable building foundation. Project site winterization consisting of placement of aggregate base and protecting exposed soils during the construction phase should be performed. A representative of our firm should be present during all site clearing and grading operations to test and observe earthwork construction. This testing and observation is an integral part of our service, as acceptance of earthwork construction is dependent upon compaction and stability of -the material. The Soils Engineer may reject any material, that does not meet compaction and stability requirements. Further recommendations of this report are predicated upon the asbasintion that earthwork construction will conform to recommendations set forth in this section and the Engineered Fill section. FEASIBILITY OF ON-SITE SOILS FOR USE AS ENGINEERED FILL The on-site soils are predominately silty sands, sandy silts, and sands. These soils will be suitable for reuse as Engineered Fill, provided they are cleansed of excessive organics and debris. The preferred materials specified I'or Engineered Fill are suitable for most applications with the exception of exposure to erosion. Project site winterization and protection of exposed soils during the construction phase should be the sole responsibility of the Contractor, since he has complete control of the project site at that time. ! Fill soils should be placed in lifts approximately 6 inches thick, moisture -conditioned as necessary, and compacted to achieve at least 90 percent maximum density based on ASTM Test Method 131557. Additional lifts should not be placed if the previous lift did not meet the required dry density or if soil conditions are not stable. r Krazan & Associates, Inc. With Ten Offices Serving 'Me Western United States 02205219 Sat Abs"don EvAmdob.doa KA No. 022-05218 Page No. 5 UTILITY TRENCq BACKFILL Drainage pipes may be installed in conjunction with the construction of the drainage basin. Trenches should be excavated according to accepted engineering practice following OSHA (Occupational Safety and Health Administration) standards by a Contractor experienced in such work. The responsibility for the safety of open trenches should be borne by the Contractor. Traffic and vibration adjacent to trench walls should be minimized; cyclic wetting and drying of excavation side slopes should be avoided. Depending upon the location and depth of some utility trenches, groundwater flow into open excavations could be experienced; especially during or following periods of precipitation. Utility trench backfill placed in or adjacent to buildings and exterior slabs should be compacted to at least 90 percent of maximum density based on ASTM Test Method D1557. Utility trench backfill placed in pavement areas should be compacted to at least 90 percent of maximum density based on ASTM Test Method D1557. Pipe bedding should be in accordance with pipe manufacturer's recommendations. The Contractor is responsible. for removing all water -sensitive soils from the trench regardless of the backfill location and compaction requirements. The Contractor should use appropriate equipment and methods to avoid damage to the utilities and/or structures during fill placement and compaction. PIPE BEDDING AND ENVELOPE Proper bedding and envelope should be provided for pipes. The bedding surface should be smooth and true to the design grade. At least 12 inches of compacted cohesionless soil bedding (100 percent passing the No. 4 Sieve avid not more than 8 percent passing and No. 200 Sieve) should be provided below the pipes. An envelope of sandy backfill material should be placed along the sides of the pipe and a minimum depth of 12 inches or'/a H over the top of pipe (H is the height of soil backfill above the top of the pipe). Within soft and wet trenches, it is recommended to use a minimum of 6 inches of standard bedding underlain by 6 to 12 inches of coarse bedding material (100 percent passing the 2 -inch sieve, 90 to 100 percent passing the 1%z -inch Sieve, 30 to 50 percent passing the'/, -inch Sieve, 5 to 20 percent passing the 3/a -inch Sieve, and not more than 4 percent passing the No. 200 Sieve). Pipe bedding and envelope should be brought to near optimum moisture content, placed in loose lifts not more than 8 inches in thickness, and compacted to achieve at least 85 percent of maximum density based on ASTM Test Method D1557 test procedure. Due to space limitations, a hand compactor may be required. COMPACTED MATERIAL ACCEPTANCE Compaction specifications are not the only criteria for acceptance of the site grading or other such activities. However, the compaction test is the most universally recognized test method for assessing the performance of the Grading Contractor.. The numerical test results from the compaction test cannot Krazan & Associates, Ine. With Ten Offices Serving The Western United States OXM218 "[ Abso"iaa Evalw$wdoe KA No. 022-05218 Page No. 6 be used to predict the engineering performance of the compacted material. Therefore, the acceptance of compacted materials will also be dependent on the stability of that material. The Soils Engineer has the option of rejecting any compacted material regardless of the degree of compaction if that material is considered to be unstable or if future instability is suspected. A specific example of rejection of fill material passing tyle required percent compaction is a fill which has been compacted with an in situ moisture content significantly less than optimum moisture. This type of dry fill (brittle fill) is susceptible to future settlement if it becomes saturated or flooded. TESTING AND INSPECTION A representative of Krazan & Associates, Inc. should be present at the site during the earthwork activities to confirm that actual subsurface conditions are consistent with the exploratory fieldwork. This activity is an integral part of our service, as acceptance of earthwork construction is dependent upon compaction testing and stability of the material. This representative can also verify that the intent of these recommendations is incorporated into the project design and construction. Krazan & Associates, Inc. will not be responsible for grades or staking, since this is the responsibility of the Prime Contractor. LIMITATIONS Soils Engineering is one of the newest divisions of Civil Engineering. This branch of Civil Engineering -�_ is constantly improving as new technologies and understanding of earth sciences advance. Although your site was analyzed using the most appropriate and most current techniques and methods, undoubtedly there will be substantial future improvements in this branch of engineering. In addition to advancements in the field of Soils Engineering, physical changes in the site, either due to excavation or fill placement, new agency regulations, or possible changes in the proposed structure after the soils report is completed may require the soils, report to be professionally reviewed. In light of this, the Owner should be aware that there is a practical limit to the usefulness of this report without critical review. Although the time limit for this review is strictly arbitrary, it is suggested that 2 years be considered a reasonable time for the usefulness .of this report. The infiltration rates and life of the basin are estimates. The recommendations provided in this report will provide a basin which has good initial absorption characteristics. The long-term .performance of the basin is difficult to estimate due to the uncontrolled variables. Foundation and earthwork construction is characterized by the presence of a calculated risk that soil and groundwater conditions have been fully revealed by the original foundation investigation. This risk is derived from the practical necessity of basing interpretations and design conclusions on limited sampling of the earth. The recommendations made in this report are based on the assumption that soil conditions do not vary significantly from those disclosed during our field investigation. if any variations or undesirable conditions are encountered during construction, the Soils -Engineer should be notified so that supplemental recommendations may be made. Krazan & Associates, We. With Ten Offices Serving The Western United States 02205218 Soil Abmrpdw E% -MJ 1idMd0C. KA No. 022-05218 Page No. 7 The conclusions of this report are based on the information provided regarding the proposed construction. If the proposed construction is relocated or redesigned, the conclusions in this report may not be valid. TlreC it t;rtghider should be -notified of any changes so th6-recommendations maybe reviewed and re-evaluated. , J This report is a Soil Drainage Evaluation with the purpose of evaluating the soil conditions in terms of foundation design. The scope of our services did not -include any Environmental Site Assessment for the presence or absence of hazardous and/or toxic materials in the soil, groundwater, or atmosphere; or the presence of wetlands. Any statements, or absence of statements, in this report or on any boring log regarding odors, unusual or suspicious items, or conditions. observed, are strictly for descriptive purposes and are not intended to convey engineering judgment regarding potential hazardous and/or toxic assessment. The geotechnical engineering information presented herein is based upon professional interpretation utilizing standard engineering practices and a degree of conservatism deemed proper for this project. It is not warranted that such information and interpretation cannot be superseded by future geotechnical engineering developments. We emphasize that this report is valid for the project outlined above and should not be used for any other sites. If you have any questions, or if we may be of further assistance; please do not hesitate to contact our office at (661) 837-9200. SN/DRJ:ch/da R-' Respectfully submitted, KI AZAN & ASSOCIATES, INC. Steve Nelson Project Engineer _ n 1 ref Q Dave R. Jar z, 11 ,/� p / O',. Managing Engineer RCE No. 60185/RG N . zssa cc fxkcsJune 30. 2006 = Krazan & Associates, inc. With Ten Offices Serving The Western United States x 02205211 Soil Abwrpdon Evalustkn 4z 0 to is d Q i Appendix A Page A.1 APPENDIX A FIELD INVESTIGATION Field Investiention The field investigation consisted of a surface reconnaissance and a subsurface exploratory program. Three 4%2 -inch exploratory borings were advanced. The boring locations are shown on the attached site plan. The soils encountered were logged in the field during the exploration and are described in accordance with the Unified Soil Classification System. The logs of the exploratory borings are presented in this Appendix. 1 l J 1 a Krazan & Associates, Inc: With Ten Offices Serving The Western United States 0220.521S Soil Ab"ion E%W%mdtw4w UNIFIED SOiL CLASSIFICATION AND SYMBOL CHART Description Blows per Foot COARSE-GRAINED SOILS (more than 50% of material Is larger than No. 200 sieve size.) < 5 Clean Gravels (Less than 5% fines) 5-15 GW I Well -graded gravels, gravel -sand GRAVELS mixtures, little or no fines More than 50%,o GP Poorly -graded gravels, gravel -sand of coarse �a mixtures, little or no fines fraction larger Gravels with fines (More than 12% fines than No. 4 Soft sieve size GM Silty gravels, grave{ -sand -silt mixtures 6-10 GC Clayey gravels, gravel -sand -clay 11-20 mixtures 21-40 Clean Sands Less than 5% fines > 40 SW gravelly sands, 4.76 to 2.00 littlelor no finseasnds, SANDS 2.00 to 0.042 506A or moreSp Poorly graded sands, gravelly sands, of coarse little or no fines fraction smaller than No. 4 Sands with fines More than 12% fines sieve sizeSM Silty sands, sand -sift mixtures SC Clayey sands, sand -clay mixtures FINE-GRAINED SOILS (50% or more of material is smaller than No. 200 sieve size.) Inorganic silts and very fine sands, rock SILTS I ML flour, silty of clayey fine sands or clayey AND silts with slight Plasticity inorganic clays of low to medium CLAYS Liquid limit CL Plasticity, gravelly clays, sandy clays, less than silty clays, lean days 50% OL Organic silts and organic silty days of low plasticity Inorganic silts, micaceous or MH diatomaceous fine sandy or silty soils, SILTS elastic silts AND CH inorganic clays of high plasticity, fat CLAYS Liquid limit clays 50% or greater OH Organic clays of medium to high Plasticity, organic slits HIGHLY " ORGANIC L' it PT Peat and other highly organic soils SOiLS CONSISTENCY C -L SIF.ICATION Description Blows per Foot Granular Soils Very Loose < 5 Loose 5-15 Medium Dense 16-40 Dense 41-65 Very Dense > 65 Cohesive Soils Very Soft < 3 Soft 3-5 Firm 6-10 Stiff 11-20 Very Stiff 21-40 Hard > 40 GRAN SIZE;CLA55TF1CAT.1 ON:::::: Grain Type Standard Sieve Size Grain Site in ■MMINIMMIr Millimeters Boulders Above 12 inches Above 305 Cobbles 12 to 13 inches 305 to 76.2 Gravel 3 inches to No. 4 76.2 to 4.76 Coarse-grained 3 to % inches 76.2 to 19.1 Fine-grained % inches to No. 4 19.1 to 4.76 Sand No. 4 to No. 200. 4.76 to 0.074 Coarse-grained No. 4 to No. 10 4.76 to 2.00 Medium -grained No. 10 to No. 40 2.00 to 0.042 Fine-grained No. 40 to No. 200 0.042 to 0.074 Silt and Clay Below No. 200 Below 0.074 60 01so a 40 0 }z 30 20 g 10 IL 1 ,,• MEMO ENDS ■■■NIM■M!NN ■MMINIMMIr ■EMME EM ■.!.■.■■■ MEN=01000 0 10 20 30 40 50 W 70 e0 90 Joe LIQUID LIMIT (LL) (%) Log of Drill Hole 131 Project: Tentative Tract 6557 Project No: 022-05218 Client: Standard Pacific Homes Figure No.: A-1 Location: SWC Bershire Road & Stine. Road, Bakersfield Logged By: Wayne Andrade Depth to Water> Initial: None At Completion: None Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 45C Krazan and Associates Hole Size: 4'/Z inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 1 of 3 SUBSURFACE PROFILE SAMPLE Penetration Test � blows/ft g Water Content (%) Description v, w O N C CL Q o `� 20 40 60 10 20 30 40 Ground Surface SANDY SILT (ML) Very loose, fine-grained; dark brown, moist, drills easily ; 2 Loose below 12 inches _ ....:..............:-.............._ Medium dense, light brown, and damp 97.1 8.9 23 `• below 2 feet 4 104.9 8.5 23 a' E ' _ -.-_•_--i-_--_ 8 SILTY SAND (S) Dense, fine- to medium -grained; light brown, damp, drills firmly 10- 120.2 3.4 43 ....... i SILTY SAND/SANDY SILT (SM/MLJ 14 Medium dense, fine-grained; light brown, damp, drills easily 118.5 3.8 35 i 16 --- ---r• i -- 18 SAND (SP) ��'•`- Dense, fine- to medium -grained; light v:+ gray. damp, drills firmly ........ ' -•_ _-' --___-- Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 45C Krazan and Associates Hole Size: 4'/Z inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 1 of 3 Log of Drill Hole 131 Project: Tentative Tract 6557 Project No: 022-05218 Client: Standard Pacific Homes Figure No.: A-1 Location: SWC Bershire Road & Stine Road, Bakersfield togged By: Wayne Andrade Depth to Watery Initial: None At Completion: None SUBSURFACE PROFILE SAMPLE Penetration Test n blows/ft Water Content (%) Description' V! n E O n as A cn 220 0 A ° 20 40 60 10 20 30 40 t-- m :1' 103.2 1.5 41 22'' — 113.4 20.6 43 26 SIL TY SA (SM/ML) Dense, fine-grained. olive brown, moist, ' drills firmly = i SAND (SP) 28_ Dense, fine- to medium -grained: light - - ....... - grayish -brown, damp, drills firmly 30 J6.t] 3.4 42 .......... _......_-... _. _L..__._.. 2 32- 34 108.5 3.2 57 t —' - - i V.: - 38 a' 40 59 [ijj]L23.0= Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 45C Krazan and Associates Hole Size: 4% inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 2 of 3 Log of Drill Hole 131 Project: Tentative Tract 6557 Project No: 022-05218 Client: Standard Pacific Homes Figure No.: A-1 Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade Depth to Water> Initial: None At Completion: None Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 46C Krazan and AssoGlates Hole Size: 4'/Z inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 3 of 3 SUBSURFACE PROFILE SAMPLE Penetration Test blows1ft g Water Content (%) Description' N o E a o v>i a o 20 40 60 110 20 40 tCL _ ^30 2 42- 44- Very Very dense below 45 feet 94.5 13.1 50+ ::: _...... r. _... _ ....s_._. _._.• ter; 48- 8 f• j g 5 End of Borehole _ - - - - --- 52 54 58 60 - _ .............. .;.�..� .. ... Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 46C Krazan and AssoGlates Hole Size: 4'/Z inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 3 of 3 • g of Drill Hole i Project: Tentative Tract 6557 Client: Standard Pacific Homes Location: SWC Bershire Road & Stine Road, Bakersfield Depth to Water> Initial: None Project No: 022-05218 Figure No.: A-2 Logged By: Wayne Andrade At Completion: None SUBSURFACE PROFILE SAMPLE Penetration Test blows/ft Water Content (%) Description v q o vTi o in 20 40 60 10 20 30 40 HT Ground Surface SANDY SILT (ML) Very loose, fine-grained; dark brown, moist, drills easily _ 2 Loose below 12 inches 110.9 13.6 8 ` 4 _.'- �-•----- -- -Medium SILTY SAND (SM) Mediumdense, fine- to medium -grained; tight brown, damp, drills easily _ ~ 125.3 6 3.0 29 :.•.::: • L........... _ _... ;mate SAND (SP). Medium dense, fine- to medium -grained; light gray, damp, drills easily 10 101.9 2.7 22 -_~ • --. -- 12:, ' _ -- 14 •Y�` • ' Kt 2.5 12 16 SANDY SILT (ML) 102.6 16 Loose, fine-grained; brown, moist, drills -----}—�— easily SAND (SP) ! .... 18 Medium dense, fine- to medium- rained; g _..._....._._............ _. light gray, damp, drills easily ZO i'Ii:•1 ..i... Drill Method: Solid Flight Drill Rig: CME 45C Driller: Chris Wyneken Drill Date: 4-27-06 Hole Size: 4% inches Elevation: 50 Feet Sheet: 9 of 3 Log of Drill bole 132 Project: Tentative Tract 6557 Project No: 022-05218 Client: Standard Pacific Homes Figure No.: A-2 Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade Depth to Water> Initial: None At Completion: None Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 46C Krazan and Associates Hole Size: 4'/s inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 2 of 3 SUBSURFACE PROFILE SAMPLE Penetration Test blows/ft Water Content (%) Description ;✓ c i E h a� Cl)o m 20 40 60 10 20 30 40 _- _ Vic; t 102.2 3.3 34 24 ................. --------••---- 26 SANDY SILT (ML) 99.8 3.1 30 • Medium dense, fine-grained; olive ---- - - "- '-- -- brown, moist, drills easily SAND (SP) --"--- - - •-- 28 :;:'„":: Dense, fine- to medium -grained; light 'J- gray, moist, drills firrnly 30 95.3 •7.3 53 ,- 32 101.1 3.6 60 .......... - 38 `�`' Very dense below 38 feet 40 Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 46C Krazan and Associates Hole Size: 4'/s inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 2 of 3 Log of Drill Hole 133 Project: Tentative Tract 6557 Project No: 022-05218 Client: Standard Pacific Homes Figure No.: A-3 Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade Depth to Water> Initial: None At Completion: None SUBSURFACE PROFILE SAMPLE Penetration Test blows/ft Q Water Content (°�) Description CL E c C3 U) z o T a di 20 40 60 10 20 30 40 Ground Surface ....._:...:....... - SANDY SILT (ML) Very loose, fine-grained; dark brown, moist, drills easily 2 Loose below 12 inches Medium dense, light brown, and damp __....;........ _......... _.._... below 2% feet _......::......,.€_.... _. .... ___...__. 4 ._ .... ._.... _._ .... _.. _.:. SILTY SAND (SM) Medium dense, fine- to medium -grained; _......__._......_ ___...._....--- 8 light brown, damp, drills easily 10 --. _...... - 12 SANDY SILT/SIL TY SAND(SM/ML) Medium dense, fine-grained; fight brown, damp, drills easily __..__.___._.... ....._.._._.. SANDY SILT (ML) Medium dense, fine- to medium -grained; ............. ...... .i .._........... 16 light brown, damp, drills easily SILTY SAND (SM) Medium dense, fine- to medium -grained; __..._._.._._... _.'_...... ; 181 light brown, damp, drills easily ..... _......_. _....._. `:_....__._ 20 ' ;.._._.__s...._...._....__ .... _..... Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 45C Krazan and Associates Hole Size: 4Ya inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 1 of 3 • • ofDrill Hole i Project: Tentative Tract 6557 Client: Standard Pacific Homes Location: SWC Bershire Road & Stine Road, Bakersfield Depth to Water> Initial: None Project No: 022-05218 Figure No.: A-3 Logged By: Wayne Andrade At Completion: None SUBSURFACE PROFILE SAMPLE Penetration -rest blows/ft n Water Content (%) Description 0 r a� m % oto o a o ai 20 40 60 10 20 30 40 o f- _._.... ........ ....... --- ..,. SAND (SP) -= Medium dense, fine -.to medium -grained; 22 _ light gray, moist, drills easily : 24 26 E E I 28 30 ; .. .;_...__ ..... 36- 6 38 38 40 Drill Method: Solid Flight Drill Rig: CME 45C Driller: Chris Wyneken r • • Drill Date: 4-27-06 Hole Size: 4"/$ inches Elevation: 50 Feet Sheet: 2 of 3 Log of Drill Hole 133 Project: Tentative Tract 6557 Project No: 022-05218 Client: Standard Pacific Homes Figure No.: A-3 Location: SWC Bershire Road & Stine Road, Bakersfield Logged By: Wayne Andrade Depth to Water> Initial: None At Completion: None Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 45C Krazan and Associates Hole Size: 4% inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 3 of 3 SUBSURFACE PROFILE SAMPLE Penetration Test blows/ft g Water Content (%) Description\_, 0 o m E � d y y CL p T 20 40 60 10 20 30 40 cc0 Hi 42- 44 •}: F " t s ij q�+ is 46 •; �Yi 50 End of Borehole - ---- --y"- ' 52- 25456 54- 56- 58 ................... 60 Drill Method: Solid Flight Drill Date: 4-27-06 Drill Rig: CME 45C Krazan and Associates Hole Size: 4% inches Driller: Chris Wyneken Elevation: 50 Feet Sheet: 3 of 3 im .0 Stantec RDR, TRACIII! x'15157 CITY 111 APPENDIX Jul. 17, 06 4.8 APPENDIX 8: CALCULATION METHOD FOR THE STREET FLOW 1114TER DEPTH AT THE GUTTER Dimensional Variables: (See attached figure) D: Curb height = 0.5 feet y: Sidewalk run: 5 feet Ss: Sidewalk rise = 0.1 feet (2% slope) Tg: Curb run = 0.125 feet W. Gutter width = 2 feet z: pavement width =16 feet Hg: Gutter rise = 0.167' (8.33% slope) Hp: Pavement rise = 0.32' (2% slope) Hydraulic Coefficients: Nc: Manning's roughness coefcientfor the concrete curb and gutter = 0.015 Np: Manning's roughness coefficientfor the road mix pavement = 0.018 Mannings equation: V = K Rails 112 n Where: V.• velocity (ft/sec) K.• constant =1.49 S.• Longitudinal slope (ftfft) R: Hydraulic radius, R = `4 A: Flow cross-sectional area (ft2) P: Wetted perimeter (ft) The Manning's equation can be used to calculate an irregular section with different roughness coefficients. The solution can be calculated for two different conditions. In the first case the water is flowing in the gutter section only (d < 0.167 ft). The second case is where water spreads to the pavement. • SIDEWALK GUTTER PAVEMENT Case 2 (gutter depth<waterdepth<ctqb height) GUTTER PAVEMENT PAVEMENT 211, W. Hp T& DRAINAGE REPORT STREET FLOW WATER DE zitantec uonsuning Inc. AdEkk 1400 18th Street Pokeirsfield, CA 93301 Tel. 661.616.0000. StantlK Fox. 661..616.2400' www.stantec.com Hp T& DRAINAGE REPORT STREET FLOW WATER DE Therefore, using the dimensional variables above the flow velocity in case 1 can be expressed as; Case 1 ( d < 0.167) V = (1.49)(0.469d)213 5112 0.015 Where; A=6.11d2 P=13.04d R = 0.469d For d = 0.167 then, A = 0.1704 P = 2.1777 R = 0.0782 Case 2(0.167<d<0.5) V = (1.49) (0.125d2 -d-2.038d-0.168) 5/3 + (25(d-0.167)2)113 (S)112 (0.015)(1.031d+2.007)213 (0.018)(50.04d-8.3567) 213 (25.125d 2 — 6.312d + 0.529 Where; Al = 0.125d2 + 2.038d — 0.168 Pt=1.031d + 2.007 _ 0.125d 2 + 2.038d — 0.168 R' 1.03 ld + 2.007 A2 = 25(d — 0.167)2 P2= 50.04d — 8.3567 R2 =0.5d — 0.0835 Using the above formulae it is possible to calculate the runoff flow velocity for any assumed water depth. All 11.1 IBM ➢ Calculate the tributary area, (AT) Find the longest flow path, (L) ➢ Assume a gutter flow depth, (d) ➢ Calculate the street flow velocity, (VQ) ➢ Calculate the street flow cross sectional area, (A,) ➢ Calculate the flow travel time in minutes, T, V C60) 0 ➢ Calculate total critical time, T,� =15 min+ T ➢ Find the corresponding intensity from -the duration intensity curve (Figure D-1 City of Bakersfield Subdivision and Engineering Design Manual) Calculate the peak runoff, Q = (C)(I)(AT ) Calculate street flow velocity Vf = AC If V f = Vp stop, else calculate the flow depth (d) that corresponds to. Vf.and restart from the fourth step until both velocities are equal or adequately close. M. Stantec APPENDIX Jul. 17, 06 4.9.1 Curb Opening Inlet Dimensioning STANTEC v:kprojects\270054.00kdraln\drainage reporUr6557.doc 4.21 7" 0 Iq lq Iq U� U) C) u) :4") ul q Iq 9 (n 0 6' C'i m S'), q th co 41) 1E 19 Ce) 0) CF) 'ct V) (D 0 t- 0 -t w c) N 75 10 0 0 - LO "t 'q Q t- 0 m 0 cl I m 0 6 CV 6 CV CV cV CV c6 N "i C 6 c6 cli cli ro N 04 C4 C\l C-4 C-4 N C-4 N N N C14 Cq C-4 N L6 (7) cy) 0) O -4 cc) Lc) 0) N c) q M (C) fl.LO clvi 'n N M M N c'4 7 0 C) C> C) 0 C:) 0 C, C) 0 O C) c) C> c:> M cyi UL to Lo 0 to Lo if) Lo u) L') L') u.) L') Lo 0 C) C) c) C) 0 0 0 0 0 0 0 0 c::! q 00a a 0 Cl a C' 0 c:) 0a C U) 0 0) Q. . . . ol I I C: 0 [2 E M m m Im 0 c') M 0 m m 0 m m 0 0 (D 'cL 0 co co co m W c) w c) w 0 w M w cl) cl) m cy) 0 w co W Mm W co co U- c! O O O O O q q O O O O0 -2 0 c3 O O O CD C3 O CD a c) c. C: 0 (N 04 C'l CN C14 C\l 04 N C4 N N N N N N N 70 a- I'm cm cm m (m M cn D) cm tm cm cn CD C;c U) C, A 0 N —E "E "E -E -E -E 00 — — — — — — — — — — 0 -2 -2 -2 -2 E E -2 -2 -e U- Ij 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 U) co (D r- t- C-4 oo C'4 0 cD ()0 cy) (D 'q o) 0 r_ U) N Lq (.q (q (q r'7 O(q "4: (1 c! u) r- (D c C) M C) o C) C) — — — — a O C; cu "Lu" O , , " Ul) , '0 W�. Uq Uq 9)l(')t(')(t74, U� l 4 4 "i 6V' M—cl) '0 CO '(1), co C9 (1) C') 13) C:: w Lo a Lo m N CO r-- r- m 0 1-, 0 C) a N O7 Iq O h 14: 7 O O Cq cq (C) C) CO (D CO M co co N -q 4 m (\I m m CV cli Cl 7 C14 ,r LO CD. (N LO N LO C> LO (0 LO co -,t N 00 to (I m P? 11 " cl M M M c! " 7 " " c! 7 CD. O (5 C) 6 a C) cn, a C) C) C) 0 c, CD 6 (Yi FL 0 (n :0-,- LL�2 u2 Lo to 0 Lo Lo Lo U) Lo C: 0 0 0 0 0 C) C) C) CD C) C, C) a a C) 0 C) 4 6 ci 0 C; ci 0 6 6 6 6 6 6O M E 0 C: rn CL N cn a) '0 CY) 0 E M M 0 C,) C,) M C,) M C,) C,) C,) Ce) M M M 0 CL co co co co CC) co co co co 00 co co co co co co U - 7 ;,o o c) C:) c) 6 C:) 3 c, C) a � 0 0 a C) CD CD 0 a) C: .0 O =3 (n N N N N N N N N C4 N N N N N N C\l E • E 0 E CIO 'n co w w co w 0 co w w co co U) U) U) -E 'E 00 42 0 c c C Cs C: S s s c c a c c t4 Q) e e -e e E e e e e-2 e-2 e e :3 =3 =J =3 =3 =1 =3 =J =3 M M M LL C) C) U U U U U C) U C) C-) 0 C) N 461.- 1�5 4 ;:, co i "m �(;� CD CO r- CO LO C, CO (0 a) -t LO 0) (n O) O" cq O7 Ir! m" r_ C) — — — C) (14 a CD 0 C$ 0 C' a) .0 cu CY) :3 0 m 0 Stantec APPENDIX Jul. 17, 06 4.9.2 Inlet Nomographs of City of Bakersfield STANTEC v:kprojects\270054.00\drain\drainage reporUr6557.doc 4.22 • Sfl � 1-.�CFi l ,� 1� Gi�TCH � i�Si N �` W oKST CA.5 E, Q t o= 3.1 7 C FS� CITY OF BAX ERSFi7ELD INLET CAPACITY -IN A SAG TYPE "A" STANDARD CATCH' BASIN h = height of openiing = 7" H = water depth = 8" 111h=1.14 I.o t2 . 5 11 to 4 .9 e 10 6 a7 O 3 1.6 cfI/f. t ZS W 2 .s CL v 1.0 •, a d L r ;n .6 F- W i WW 5 .� 4 4 z z � CL 0 nW �� 3.5 ® F®. o ® c' LL ® i o x p ,06 z x O .04 . 2 w .03 CL U cld d J 5 c� .0I L ®� �?:.• ;. CURB 1.5 - »; •';° ®h •� 'HEIGHT ®106tiL ®EPRESSION ( t NOMOGRAPH FOR CAPACITY OF CURB OPENING INLETS. AT LOW POINTS z W Zf=' 0 ti - 0 0 F - x 0 w` 2 I.� 1.6 x 3.5-= 5.6 for 3'- 6" wide 1.0 curb opening .9 =c 4 cG.'2 .6 h o.5® .7Q108C _.3.17 (�t. 1 S' :A� T -�Y A X ly, v 'AWI -1 N AK e LEGEND CAUTION Solid Liiiis, .0.10' 061jer depression, This charl*6ii0liti only to side openings DasW Lines *,0.25'* gutter depression p6o.jNJio:9Il4'd;rtclio, if the Ini. tctpttd Itow 11 , - 5. percent — I merit cress L a Length Of 'Opening -owbowon . p rctA povt slop® --iond the gutter depressign Cross slope. 41 Capacity Cubic Feet :per, Secondj I)SS (Gt') DO -F S No T DAM -TE - -FA K T 6,55-1 Cot�S Isl oF Cupg ofvNiOG - --- I ... �.�■■■sum....■n■■ '�� .Ill�llt�\� til '::' a in �i � `�i�� ELI NONE 1101 41 Capacity Cubic Feet :per, Secondj I)SS (Gt') DO -F S No T DAM -TE - -FA K T 6,55-1 Cot�S Isl oF Cupg ofvNiOG DRAINAGE" Pi'11-011"'Y HELD APPENDIX Jul. 17, 06 4.10 TRACT 6557 STORM SEWER MODEL 4.10.1 Storm Sewer Summary Report STANTEC v:\projects\270054.00\drain\drainage reporL.V6557.doc 4.23 Storm .. Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No. rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) N (ft) (ft) (ft) (ft) No. 1 CB 30 36.09 48 c 41.6 336.75 337.10 0.841 343.03* 343.06* 0.06 343.12 End 2 35.48 48 c 23.0 337.10 337.16 0.261 343.12* 343.14* 0.12 343.26 1 3 23.46 36 c 42.4 338.16 338.27 0.259 343.26* 343.32* 0.17 343.49 2 4 23.46 36 c 42.4 339.49 339.59 0.236 343.49* 343.54* 0.17 343.71 3 5 20.41 36 c 418.7 340.48 341.53 0.251 343.75 344.11 0.16 344.26 4 6 19.50 36 c 495.8 341.53 342.77 0.250 344.30 .344.73 0.25 344.97 5 7 19.50 36 c 271.2 342.77 343.45 0.251 345.10 345.35 0.26 345.62 6 8 15.86 30 c 279.7 343.95 344.65 0.250 345.72 346.31 0.33 346.64 7 9 13.23 30 c 280.0 344.65 345.35 0.250 346.85 347.12 0.20 347.32 8 10 10.46 24 c 135.0 345.85 346.18 0.244 347.34 347.70 0.26 347.96 9 11 8.72 24 c 145.0 346.18 346.55 0.255 348.01 348.19 0.16 348.34 10 12 8.72 24 c 48.4 346.55 346.67 0.248 348.34 348.40 0.14 348.54 11 13 6.92 18 c 233.0 347.17 347.64 0.202 348.54* 349.61* 0.24 349.75 12 14 5.62 18 c 175.6 347.64 348.00 0.205 349.83* 350.33* 0.16 350.49 13 15 1.83 18 c 176.2 348.00 348.35 0.199 350.63* 350.68* 0.02 350.70 14 16 CB 26 2.41 18 c 16.3 342.00 342.05 0.308 343.85* 343.86* 0.03 343.89 4 17 CB 29 0.64 18 c 23.0 342.00 342.15 0.652 343.88* 343.88* 0.00 343.88 4 18 0.91 18 c 52.4 347.00 347.20 0.382 347.36 347.59 0.09 347.69 5 19 3.64 18 c 240.4 346.00 346.60 0.250 346.73 347.72 0.10 347.83 7 20 2.77 18 c 48.4 346.35 346.55 0.413 347.39 347.42 0.11 347.53 9 21 CB 12 0.34 18 c 23.0 346.68 346.78 0.435 348.21 348.21 0.00 348.21 10 22 CB 7 0.70 18 c 13.0 347.17 347.25 0.615 348.67 348.67 0.00 348.68 12 23 1.30 18 c 42.4 347.70 347.80 0.236 349.98* 349.99* 0.01 349.99 13 24 3.79 18 c 212.9 348.00 348.30 0.141 350.58* 350.85* 0.07 350.92 14 25 1.83 18 c 42.4 348.35 348.50 0.354 350.70* 350.71* 0.02 350.73 15 26 CB 27 0.72 18 c 23.0 347.20 347.30 0.435 347.72 347.73 0.05 347.78 18 27 CB 14 1.50 18 c 23.0 346.60 346.70 0.435 347.90 347.91 0.02 347.92 19 28 CB 9 1.08 18 c 13.0 346.55 346.65 0.769 347.61 347.61 0.01 347.62 20 29 CB 6 0.62 18 c 13.0 347.80 347.90 0.769 350.00* 350.00* 0.00 350.00 23 30 CB 3 3.17 18 c 23.0 348.30 348.35 0.217 350.95* 350.97* 0.05 351.02 24 31 CB 1 1.26 18 c 23.0 348.50 348.60 0.435 350.74* 350.74* 0.01 350.75 25 32 12.02 30 c 237.6 338.66 339.37 0.299 343.29* 343.50* 0.09 343.59 2 Project File: LINE49-REVISION.stm Number of lines: 70 Run Date: 08-29-2006 NOTES: c = cir; e = ellip; b = box; Return period = 10 Yrs. ; *Surcharged (HGL above crown). Hydraflow Storm Sewers 2005 Page 2 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No. rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) N (ft) (ft) (ft) (ft) No. 33 CB 11 1.40 18 c 13.0 346.68 346.78 0.769 348.20 348.20 0.01 348.21 10 34 CB 8 1.10 18 c 23.0 347.17 347.25 0.348 348.67 348.67 0.01 348.68 12 35 CB 28 0.19 18 c 13.0 347.20 347.28 0.615 347.77 347.77 0.00 347.77 18 36 CB 24 1.16 18 c 13.0 346.60 346.70 0.769 347.91 347.91 0.01 347.92 19 37 CB 10 1.69 18 c 23.0 346.55 346.65 0.435 347.59 347.59 0.03 347.63 20 38 CB 5 0.68 18 c 23.0 347.80 347.90 0.435 350.00* 350.00* 0.00 350.00 23 39 CB 4 0.62 18 c 13.0 348.30 348.35 0.385 350.99* 350.99* 0.00 351.00 24 40 CB 2 0.57 18 c 13.0 348.50 348.60 0.769 350.75* 350.75* 0.00 350.75 25 41 10.41 24 c 132.6 339.87 340.32 0.339 343.59* 343.87* 0.03 343.90 32 42 10.41 24 c 113.1 340.32 340.78 0.407 343.90* 344.14* 0.17 344.31 41 43 7.86 18 c 286.2 341.28 342.00 0.252 344.31* 345.91* 0.24 346.15 42 44 7.86 18 c 41.9 342.00 342.10 0.239 346.15* 346.39* 0.22 346.61 43 45 7.86 18 c 562.5 342.10 343.51 0.251 346.61 * 349.76* 0.05 349.81 44 46 7.86 18 c 52.4 343.51 343.64 0.248 349.81 * 350.10* 0.31 350.41 45 47 7.86 18 c 280.2 343.64 344.34 0.250 350.41* 351.98* 0.31 352.29 46 48 3.53 18 c 112.4 344.34 344.62 0.249 352.53* 352.66* 0.06 352.72 47 49 CB 17 1.80 18 c 13.0 344.62 344.65 0.231 352.77* 352.77* 0.02 352.79 48 50 0.98 18 c 48.4 346.60 346.80 0.413 347.91 347.92 0.01 347.92 19 51 1.61 18 c 38.4 343.50 343.60 0.260 343.98 344.18 0.10 344.28 32 52 2.55 18 c 125.8 343.50 344.00 0.398 344.45 344.65 0.19 344.84 42 53 1.38 18 c 42.4 346.80 346.90 0.236 352.58* 352.59* 0.01 352.60 47 54 CB 18 1.73 18 c 23.0 348.90 349.00 0.435 352.77* 352.77* 0.01 352.79 48 55 CB 25 1.61 18 c 13.0 343.60 343.65 0.385 344.30 344.30 0.07 344.38 51 56 CB 21 1.25 18 c 13.0 344.00 344.10 0.769 345.00 345.00 0.02 345.02 52 57 CB 16 0.61 18 c 13.0 346.90 346.95 0.385 352.61 * 352.61* 0.00 352.61 53 58 2.95 18 c 52.4 346.90 347.10 0.382 352.55* 352.59* 0.04 352.64 47 59 0.98 18 c 42.4 346.80 346.90 0.236 347.92 347.93 0.01 347.94 50 60 CB 22 1.30 18 c 23.0 344.00 344.10 0.435 345.00 345.00 0.02 345.02 52 61 CB 15 0.77 18 c 23.0 346.90 346.95 0.217 352.61* 352.61* 0.00 352.61 53 62 CB 19 0.97 18 c 13.0 347.10 347.15 0.385 352.67* 352.67* 0.00 352.68 58 63 CB 23 0.98 18 c 13.0 346.90 347.00 0.769 347.94 347.94 0.01 347.95 59 64 CB 20 1.98 18 c 23.0 347.10 347.15 0.217 352.66* 352.67* 0.02 352.69 58 Project File: LINE49-REVISION.stm Number of lines: 70 Run Date: 08-29-2006 NOTES: c = cir; e = ellip; b = box; Return period = 10 Yrs. ; *Surcharged (HGL above crown). HydraFlow Storm Sewers 2005 Storm Sewer Summary Report Page Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No. rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) M (ft) (ft) (ft) (ft) No. 65 2.63 18 c 217.8 345.65 346.15 0.230 346.93 347.09 0.08 347.17 8 66 1.39 18 c 45.0 346.15 346.30 0.333 347.22 347.22 0.02 347.25 65 67 CB 13 1.39 18 c 16.3 347.00 347.05 0.308 347.45 347.55 0.11 347.66 66 68 1.24 18 c 53.4 346.15 346.45 0.562 347.21 347.21 0.03 347.24 65 69 CB 32 0.29 18 c 15.0 346.45 346.50 0.333 347.26 347.26 0.00 347.26 68 70 CB 31 0.95 18 c 25.0 346.45 346.50 0.200 347.24 347.25 0.02 347.27 68 Project File: LINE49-REVISION.stm Number of lines: 70 Run Date: 08-29-2006 NOTES: c = cir; e = ellip; b = box; Return period = 10 Yrs. ; *Surcharged (HGL above crown). myoranow storm sewers zuuo Stantec RAIH'�JAGE FOR "(,`f4,,AGT ti�35"F LL, APPENDIX Jul. 17, 06 4.10.2 Storm Sewer Inventory Report STANTEC v:\projects\270054.00\drain\drainage reporLb-6557.doc 4.24 r 1 { v c c n u C u d i C_ z J (D 7 M N N N fn m m lb 0) U U U U N 00 0 W N U) M t` CC) O (D M "It 'd' (0 tl0 M W N N ti 0) t• co O O E CD O -7 0� CC') N h 7 O 7 Un N O V: O (O M N h M M C r N N - M u) (n (D � et "t 'cl' 'd' cD LO M i 't d' V' co v M M M M M M M M M M M M M M m m M M M M M N .-+ O O O O O O O O O O O O O O O O O O O O O 0 !L (n o 0 0 o O O O o 0 C. 0 o O o O Co o O o0— 0 CVM M M Cl) Mm Cl) Cl) Cl) M M M Cl) Mm co Cl) Mm M M 7— - r r a- r- r r r c- - r Z 6's O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cl O Co O O O O O O O O O I - 0) m c N a w U U U o U C) U U U U o U CU . U 2U U U U U U U 0 a A C N C E co (D (D O O (D O o It It 'd' M co W co co 00 00 00 co =3 co M M M. M M M N N N - - - - - - - `-' - Z 'C Q O (0 t` O Cl) t-* LO CC) U) co LO � It O CC) to to O O Cn 00 r r N CC) C() f` 14: (D M 7 (n O O O M O N (D UA r-� ti ti 00 N co C) M 4 Cco CD ti CO co N N t-- CO (D (0 M Cl) M M �t V' 'IT 'd' It IT 'd' M M M M M M M M M M M M M M M M M M M M M CD (D 'qY LO CI) to CO U) 'ct CD to O U) 00 M M C O o OR N N N N N N N N N N N N N N M (D M J (A V O O O O Ca O O C7 O O CD O O O O Co Ca O Ca O O t: Cm O (D O 00 Cl) h U') C17 Cn W CC) t.- � O O O O O CC) 00 ® r,.� 7 7 r: V: CC) r-� W O M 7 U7 r (D O O O O O M (D (D n 00 CA CD N M �F Cfl CD M r t` co N N t` to M O C W M M M M co M M M M M M M M M M M M M M M M O O O O O O O O O O O O O O O O O O O O O C£ •� O O O O O O O O O O O O O O O Co O CD O O O OO O O O O O O O O O O O O O O O O O O O O C® U O Cl O O O O O O O O O O O O O O O O O O O V O O O O O O O O O O O O O O O O O O CD O O ® R^ O Cl O O O O O O O O O O O O O O O O O O O U. ` Lo (a O O O O O O O O O O O O O O O O O O O O O Cl R O O O O O O O O O O Cl O O O O O 'Cj Cl O O O G 3C) 0 0 C. 0 0 0 0 0 o O Co o O r tet' 0 0 0 � 00 C'I (D O O O O O O O O O O O O O O V' O O' O O M Y v C; O O Ca O O Ca O O O O O O O O N 6 Cj O Ca O V C D 7 Q _ _ _ _ _ _ > _ _ = O m d ^ O O O C? E d c d N O O O O O Q O O O � O O O O O Ca N C ® R O O (A O O O T O O CA O O O m CA CA O O O O to +L+ r CR N r OCD O O CD N T > d O 00 U) r O O U) U) d' M Ct) M M O � O 'd: O W M N N O t` r 00 M t M M r- ti (D M N ',r W M .J .2— 1 N V rh It d' N N N N Cn N N CA t W Z '0 J C C ® Cn 1^ r N Cl)Cn (D t d' ` 00 O - O r - r r d' V' 'O O W - N ® Z IL U d0) t-- co 0) N N E co .1 Z V d M d CD f ( fU C J � f� N O O Cl) r co co N Or LO � N O O N m MCDCOCCIMM m m m m m m m m U U U U U U U 00000000 N o0 O W In 0 (0 0 Nt to M N M o0 O to (D 'd' U> w N M u) C0 m E W M CO It (O It M u7 W N M 'V' O M M 'ct N 'V' V (f) u� M ti M o0 M o0 N M V M co ti M N d' ll� u) M NT O to ..b. (i1 c m LO o 0 u) (n (n u7 u') to to (n (n to (n 0 (n (n u) (n (n 0 M M M M co M M M M M M M M M co M M M M M co (nU ^ O O O O O O O O O O O O O O O O O O O u) O Y o O o 0 C. 0 0 0 o O o o O o o Cl o O o r O r r r r O r r r r r r a)r M M M M M M M M M M M M M M M M M M M M M 7 Z l8 O r O O r O O r O r O r O r O r O r O O O O O r O O O O O r O > O O O O O O O O O O O O Cl O O O O O O O O O ti C. U U U U U U U U U U U U U U U U U U U O l0 V � T (D N C E i JN tr. c0 o0 o0 c0 o0 W o0 O o0 o0 Cl W M M M c0 o0 co c0 'ct V' 3 Z G, r r r r r r r r r r M r r r r r r r r N N m (U) O O O O O' u7 O u) O r- o0 u) o0 O u) O to O N o0 a) a N W M un M h O M MM M h N N r*-: O O M O M � r• ti o0 oo t- (0 (0 rl- oo co 0) co ti t- (0 co I- co co 0 0 M M M M M M M M M M M M M M M M M M M d C N rl' d" 0 M M h fl- N M O II- (() N 1-- M M o0 r- 7 V; 2— (0 N r M V NI: h h N V M rl M (O ti ? V; Mr - M J N `'� O O '0 O O O O O O O O O O O O O O O O O. O 'C C r-_ O O u7 O O (f) O O O (0 o0 h O O u7 O O O h N ® r ti O M N O v( W M uJ (O (D r N (0 u7 W M (() M M ti r co oo n c0 (o I- co co co (o r- ti (o (o h oo oo 0) O M It M M M M M M M M M M M M M M M M M M M M � W C C •� O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cl O O O O Cl O O O O O O O o�^ C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O W 0 V 3 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ® CD (® ^ O O O O O O O O O O O O O O O O O O O O O 6L ` d R O O O O O O O O O O O O O O O O O O O O O O O O O Cl O O O O O O O O O O O O O O O O C 3 CI w O O O O N O c0 N t'- (0 O O O 0) (O 0) O o0 O N (0 � ((7 O O O O O ti O O O O O O O h O U) r O r co O r M N r O O V r r r r O r r r O O O O O n a a .n .n n n a n a s fl a n �CL U �w y O o 0 0 0 0 0 0 0 C) O o o 0 0 0 (D 0 o N E 0 M 0 M 0 M 0 M 0 M 0 0 �, 0 �, 0) o 0 M Cl M 0 0) 0 M o o Cl M Cl M 0 0 � Clc ca'� � � � M � � M M � M M � M M � 0 0 0 Q tU ^ O 'd' N O O O O O O O O O O N M W C C' cv) N r N M M M M M c+i M M M cM ('M M M M ch M r w J " r N 'd' N N r r N N N r N r r N N r r r- r d) �t W Z C N r � o0 0) O M 'ct u) O N c0 M O M d' LO N r ' r ems- N N N N N r r r r N N N N M LL U N 0 (D h 00 O O r N M `a' ((> (0 r W M O r N O 04 N N 04 N N 04 N M M M M M M M M M M V V' d' tl J Z M tU C J (D N N O N N O (V m m m m m m m m m U U U U U U U U U N 0 0 a W N (0 U) 00 n Cl) n 'V' M (o M 't n n r O 0 (D M V n V n O tD d00 E n00 7 O (D N (O V 'ct 00 Cl) M 00 't Cl) N 7 V' ? M M N M ' T C N M M It (C C •�-� `'' U) to to U) U) to U7 0 U) U) U) to U) Uy to U) U7 to M U) M 0 M LO M M Cl) M M M Cl) Cl) M M Cl) M M M M M M co y .-+ 00 N U) O Cl O O O O O O O O O O O O O O O O O 0) Y n n O O O O O O O O O O O O O O O O O O — c- i- — c- e- — a-- — e- — — — N M M M Cl) M M M M co M Cl) Cl) Cl) (Y) co M M M Cl) M Z v O O O O O O O O O O O O O O O O O O O O > O O O O O O O O O O O O O O O O O. O O O O O n y w ® c a J w U U U CU CU U CU CU U U U U U U U CU U U U U U 0 v � >+ C N C=3 E 0 co co co 0o 0o co co 00 00 co co 0o 0o 0o co co co — co c- co .-— co Z a •-- a- — a- c- c-— — �- — — .-- — — c- a-— CL O O 'It 'It N, to O O O O O O O U) 0 Cl to CA O r O O _O to O) U. O O C a O N r CV to M (o fM M V' (D 0 c0 co (D M O -T - M M M ti (O I11 M M M M. M M M M M M M M M co M M M Cl) M Cl) M 0) D.^ Lo d' to U7 U) LO M (o O d' M W n nM CO 00 M V' N M �t N N 00 M n n J N O O O CD O O O O O O O V; O M o O O O O O O O o C co O O �--' c' 7 N O O O O O O) O (D O O O M O M O 00 O Cl O M O �- O o) y ® N O r- U) (D M (D (O U� Uq c0 f� (� C W M M M M M M Cl) Cl) M Cl) M M M M M Cl) Cl) M M M M O C •£ O O O O O O O O O O O O O O O co O O O O O C O O O O O O O O O O O O O O O O O O O O O OOO O O O O O O O O O O O O O O O O O O O O O O O C o V V O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ® cn lC ^ O O O O O O O O O Cl O O O O O O O O O O O Lia `` O O O O O O O O O O O O O O O O O O O O O ® R... O O O O O O O Cl O O O O O O O O O O O O O C N O, O O O O O O O O O O M r 0 — Cl OO n n 0 - O CAI w O O O O O O CO O O O O (� CD N CD O O M n o) o) Y.Vr O O O O O O i- O OCD O r O O O r O O O v y o .n -2 a a n O. 2 2 = 2 2 2 = 2 S 2 2 =3 5 m 2 2 :3 > > = E O _ q •- O O o 0 0 0 0 O 0 0 0 0 0 O O O y E ami �w d O O O O O O O CA 0) O O O O O O C ® (® O 't It O CP O 0) O 0) m o) 6) 9) T 9 T O) O O Q Q y p)^ N o) O � N �' O d' ,� O O O O 'V �t O Cl O O w C C 000 1: (ND N w r M 00 00 N N (M M M M N N M M M ('M - J N It LO U) N — r — 0 V N N 0) W Z_ CC N C C 'd' 'd' 'et V' �' V' r M to to to 't to U) U7 O U) ® Z !1. U 0) O C O M d' 'a' U0 (D n co O O N M 0 d' to to to (o U) n to 00 U) O to O co (D N Co M CD O J Z et et [t �t �Y' 0 t[) U7 d Z, u c c e a u f r u t 4) i C i J cp 7 M O N M N m m m m 0) U U U U N 0o 0 e� w r (I0 tLq M N OMR OMo "J d E C v ri tri u7 to to v Urca M M M M M M M N .-. O O O O O O O 0 o �Y o 0 0 0 0 0 0 N Cl) M Cl) Cl) M M M Z R v O O O O O O O > O O O O O O O O n (D N ` N O o v a) m N C E =3 J .O �. co co co c0 co co co Z '4) Q LO LO M O =_ rt" to V) 7 C W ... M M. M M M M M d C M V) M N O o N N M J N v O O O O O O O 'C C_ C) to O LO to LO f0 LO ® N M c0 h (D c0 O O W .... M M M M M 'IT (`�R 0 C C £'E O O O O O O O . w v O O O O O O O C o O O O O O O O v O O O O O O O O 3 IM�^ o 0 0 0 0 0 0 0 0 0 0 0 0 c OClw co OOO M N m C Y � O O O O O V CL a 7 (D d ,-. 0 0 0 E E 0 0 0 0 0 0 0 Z 0 — Q cn w N N "� - — 10 N w Z_ a. = C O co 00 CD c00 (D (D(MO coO LL U 0) O co ( O J Z j (0 (O (0 c0 c0 h d APPENDIX Jul. 17, 06 4.10.3 Hydraulic Grade Line (HGL) Computation Procedure STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc 4.25 8 A FJ"',' APPENDIX Jul. 17, 06 4.10.3 Hydraulic Grade Line (HGL) Computation Procedure STANTEC v:\projects\270054.00\drain\drainage report_tr6557.doc 4.25 r U C ,a m o O Vj U N 'C C CO N O. m O 3 a) N b Cto UW - a) 2 3 n co 30 a- X r � m J C U y c: C_ a) E v ' (V d m J 2)•— V U C = 3 C) O U j O C -jC O cog 'p _..,. C to Q ) Wcu � C C L 3 C N c omE2D 'O U O 0 m a) ] W { N >+ C 3 p + C N o to jj rn t� a) ` 3 ca)E C a) +L 3 O = C O C � cU N (6 m c E .L.+ E 7 D E Qw ()O a) 0 x O N 0)J E E 2 E to c O M y CA C) m n. o�_ 2 ED c U + U c 2 ? c m ami �_ ' UCL ca E m o 0 0 N C O h c o.` a a) in to 3 0 y E:o E C N 'O @ � - a m m o. c ami (D acr ) - aa) N a) 3 m rn cu C E o. w N o C a)ch ('04 Ea) C CL omc�o o ro 8 .n Y + =0=CU 6x o co m ',. o = .0 c c � 3 v 0 o C O �. CO � 'L7 a) C C N ZQ 3 = o U U O a) N NX w n o '� c a) O M U E ® rn 3 c m 3 m -i m .c c a) o E > c c M m _'I J O. N N N Q E U c o M, o, m o w w c C7 2 ca N o v 'U S y N N O t`0 o c UN n 3 C O N a; d N 3 2 t U a ` m >. a) w O O E m a) a) cu a) (6 a) U) D. N m U U 0) > w 76 G .L-+ N w N ,. E U 3 o'oca F- U F- c C N iv C 3 N m v 12 o 5 o W v c 3 N N 3v m m U U ( m m m y o c E o m rn a) 3 rn m c o w Tc N m L o 3 aci a) L N 'O N O O w e O N j Q NE2CO 0 CO O V c y 3 > c c o o L a) IL C C � @ > 'a O .0 i. O FL- N H 0 F- a) h W N FL- p U c FL- O a) L ~ '— t9 v U U U c0 c0 c0 U U U r U F rn N (D C a) H N U a) c cu b w CL 3 a) O c O N N m H r 0 0 U U C m N• O Vj N + C N N b Cto 3 n co O X r � J C U W v E c- m J U n = 3 C) C -jC cog 'p U a) Wcu L 3 N c 0 m c ] W + C to 3 = C O � cU m c E a) 0 x O C7 o 2 E m c M m n. o�_ E O U N m UCL 0 0 N E U a a) in to 3 m o. c N 3 cu C N Go) C a)ch ('04 Ea) C CL Y 6x o co m 3 v 0 C O o 13 O 3 o U U O a) N NX U O M O N co a) (�6 `a) 0 N a) a) w ° Q w 0 v c o o U 0 a) 'U S N N O t`0 O UN > C O 'U >. > a) O a) a) 4= a) (6 a) o o c F- i F- F- F- W F- 1- 0) N W N N N N U U U UUUU U 1)F1 'd,, f,,! A G F APPENDIX Jul. 17, 06 4.10.4 Hydraulic Grade Line Computations STANTEC v:\projects\270054.00\drain\drainage reporUr6557.doc 4.26 u O U) (D N t*- t- (D CO C9 M O (D CD V' (D N M O m O r O C N N O r r r r N N M N N r r N r O O O O r r O 0 O O O O O O O O O O O O O O O O O O O O O 0 o O J N `7 M I(Oj O O o O O O O O O O o O o O O O O O i O V N O _ r _ _ _ _ r r r _ r _ _ r rO r r CD O u co 'd' M M 00 T U) Cl) co CD N U) (D Cl) VT O U) M M O i N U) In � CO IT M Cl) 'It O (D V O U7 O O O r (D O C(n v O O O O M U) M CD M M N O U7 O O O N fA O O N X V W O " O O O O O O O O O O O O O O O O O O O O O 00 O N L M r <t O r t` O (A (D (A d• CD O M r 00 (D r N N (A N N r U) M M O 0 CD M U) (D O (A M M O d fn o v O O r r O r N r N r r N O O O M M r O cu Q' O O O O O O O O O O O O O O O O O O O O O ❑ M r ct O M to) (D 't (D O M C' r LO O C cr y.., N c v (D O (D O NN r r CO O V' r (D r It N zt r U) N7 d• M r M 'IT 00 N M O U) O O O Cl) M r Ir r O O O O O O O O O O O O O O O O O O O O O O 00 O O r (D h N V N (D ',* '�? CO CA O O co m Cl) M r ('J'j .y W 7-M r N Cl) '�t co h M. N O ct (D U) O (D M f- (P I` M W (n 00 t` O Int O ti O 00 M M M (D 00 P-- U) h N co M M M M M M M M M M M M M M M M M M M M ((9 Op M N I- t- (D U) (O M O (D (D ': V (D N M O O O r O r r r r r r N N M N N7 r N r O O O O r r O ' s O O O O O O O O O O O O O O O O O O O O O 0 N N O O N W CD O r N N M -,t (D (D M (o O O 00 co Cl) M r O r U) U) r r O CA r O M M V ' U) CD N C v NCV M(`7M Cf1 O N CV N O O O Nm 42) U` t` Cl) W M 04 O � � CL N O O It OMD I ti U ti I- h h r ti It B y C4 r r 1--: t-� O d• 'i M M CV N N r r 6 r r E 7 Z L O O O O 00 (D O (D tiV' M O O O O O CF) N fl- M y cam- O O O O U) 0) CA (D I-- 07 CD i` U) U) U) U) U) Cl) 00 O O r J (0 tt N 't M U') N O O O r M 00 M W CA N N r .-. .� O r M In r h M M r r r 'd: U) M O 00 OR U) r-� V. CV _ Cl) M M Cl) V �r CO O ti ti 00 00 O O O Cl) Cl) h n t- W M M M M M M to M M M M M M M M M M Cl) M M Cl) COY) O O 1- O M r- U) U) U) 00 to ti 't O U) U) U) O O LO W >04 r r N In U) h V• co Cl) r to (D O O M O7 N O U) h 2� c' ti Ih W 6 N (j q L6 CO CO CO 1 00 0o Cl N 1- CO CO (O N `'' Cl) M Cl) Cl) It Int It V• It V It Vt 'd' V V Int It �t M M Cl) M M Cl) M co M M M M M M Cl) M M Cl) M Cl) M N (A � N J C, N N 0) h W 000 M Vq 00 M � (D Ch N 1 00 Ict C7 N et eP' '�t N N N r r d• N r r N U) N N U) r �t W W M T O N N r v- (0 C9 N N m n CF) O O (D N M f` 00 M U7 O U) Cl) O O O O r r O O O N O N r r M N O O O IO r O O O O O O O O O O O O O O O O O O O O O O (D U) Cl) O 00 Cl) O OO d' W O O U) W M M r (O J r N �t (O M C' N -O CA r 'ct OR O O 00 W <t O d: N N M Cl) Cl) M Cl) d' Cn O CD ti 00 00 OO CA O M M t- ti � 00 WW ;r et d' -t 't 't at V et V "t q '• d• U) I�t It 'IT d' 'i It Cl) Cl) Cl) Cl) M M M M Cl) M M M Cl) Cl) Cl) Cl) Cl) M M M Cl) Cl) N h h 00 M � M M W (D N M O N 00 h O r r r r r r r N r N r r N r O O O r N O O 9 O O O CD O O O O O O O O O o O O O O ti N N N O (6 n O CD O �t 00 OD It (D M M 00 N CA 00 00 M M M 00 M N 00 r CC) O) O r O M M t` N r r O N N co M N N M It N N N IT M r C) N IT N C. d 10O 0O 1 t- n h N O N (D N h O I- fl - ti t` M 11) M N QN N N O O O O CA h U) U) U) O OA r-:1` ti h I,-: MOR f` O ® La Q' O O O O O t` Cl) h O O Cl) CA r- O O O O CD M d• O O (� O O O O O f` Cl) t- N V: 00 ti M U) U) to to M r- O U) O 4 M M M N N r N r r r r r r r O O r N co W U) O O N U) 'tr d' et M co I() 00 (D M W JM i O N V N: M r t-: Cb M O M U) OR (D Cb M M 1` M N d M M Cl) M M 't to O CO ti' co 00 co� O M m Ih (D r— 00 E Z (D `-' V ct It rt It It It It et It V• It It d• U) It It It It "It It M M M M M M M M M M co M M co Cl) M M M M M Cl) N .� U) O CD O co M tl- U) U) U) co LO t� It O O O O O U) co O Z Q a (D E j ti (O r r r 00 '� W ON tt) t� CA M CD q 00 U) r CO U) Co r t` O 1.- O 00 O N O (V O r O (O M CO (O Iq > (n C (D"' Cl) Mm M 't'cI' It V It d• It V' '7 V' It �F 'tet It V' M Cl) N ® Cl) M M M M Cl) M Cl) M M M M M M M M M Cl) M w fd O It co It coO It '� COO U') 000 N � N N N N M It d• ti '� L (U t` O O OO d• (D W CD n Cl) W .o V CO M U) Cl) CM N M N O N CA (A U) r � O r 00. M CD LO <- N O O CY) N O Z r J N c v ao 00 m m cD to m O O v 00 LL U @5 'et V' Cl) Cl) M Cl) M Cl) M N N N N N — r — — r — r — r r — r — — <' x N N C v O r N M d' U) O t- W M O r d O Z J r N M CO M ti 00 o) r r r r r r r r r r 04 N VT O 0 C N O O O n O N O to O N O r O O O U) O O M O r O O O O O M O O O O O O O M O n r c o n 0 O C) O O C) O O C) O C) O O C) O o O O O o O O i F U O O O O O O O O O O O O O O O O O O O U) O Y v O O O O O O O O O O O O O O O O O O O r CD G r r r r r r r r r O r O (� r r r r r r r r r O r h n M m to N O O O O N N O O n N O O O N O O O O O O O O O O W '�t' Q) i C Q O O N O O O O O C) O N O O O O O O O N N N tY.1 W .N.i O O o O O O O O O O o O O o O O o O O O o 00 d d' to O O h O h Cl) r tt' (D n O to N M M N N .0 41) r O O O O O "It a O O O N " Q N O O O O O O O O N f6 O O O O O O O Cl O O O O O O O O O O O o O et U) O Co to r M M (D Cl) O 'T M co N N C N O Cl) M V N r O OO O O O 00 O OO O O O O U) O O O O O (D O rof N N o ... `-' O O O O r O O O O O O O O O O O C) o O O O o O O O O J co O N M 00 N N O N U) O to CO n N M O O U') h V' O M CO O D) n h O CD O O 1,� "t 't'd' W—y v 00 O a' O V) O to h � h 14- h ' t OO LO to to M d' 00 'ct M 7 n V h h 'd' O to tw7 O U) It V M M M M M M M M M M M M M M M co M co M M M (D U) r m r O r M O O O h n OOO O r r L O O O O O O o O O O O O O O O O O O O O O O n N ti O 'cl'd' r 00 O to O LO r V' 00 (D U) co* U) N r v tt n r O r- M M M n n �t 0o CD M n d: M M M M M C o o N O O o o N o o O o r o 0 o C., M O N � r ti r r ti ti ti 'N7, t( j N ti � � � � Uf � ,OpC Q N O r r d' r r O r r r M M C 7 L Z CL In N 'd: O O OM r (D O to O U) O to O to N 'V: N V: M 'ct N t CA O U) O to O ll) O O O O y r ® U) UO U) d' N M r r r r O r O r r (V r r O r O r CV N Jh O U) M ' r r O h O O h n CA O0) LO h d - (D m cq h O CD O O n UO N (D h U7 O O h 00 _ 2 00 O O O n n h O O O M o0 00 n h h O O O M d' 'cY 't qlT U) U7 '7 'It �t U) to LO It 'c- 'd' V V It to LO U') It Cl) Cl) Cl) M Cl) M Cl) co M Cl) M M M M M Cl) M Cl) Cl) M M 4)> U') O O O O O CO O to O h 00 U') 00 O n V) (D O to M O (D N M OD t� N CO M U) M h (D (A M (D M ti N N q o : d v n h 00 00 r- (D (0 1` 00 00 (A (D I- h Co (D 'd' rl- 'IT 00 't OO <1' 'T O 'It C a) -�t It �t It It IT It d' It IT Cl) 'V' It 'ct It M M Cl) M M Cl) M Cl) M M M M M M M Cl) M M Cl) M M C N O d' M d' O O O O O O M O O O O O O O O M M MN r N 4 M M M M M M M M c) M M c) M M M M r ,� .. r N N N N N N r N N N r et U) O O 00 O to Cl) r d' (D co r M r W M M N N w c c= r O O O M r M O (D O O O O O O O O M O �- O r O O O r O (`M O O O O O O O r N N `-' o O O O O O O O O o o O o O O o O O O o O 00 M U) N to N N O O In CD O n N N O O to (D h J' O (D O CD t` n W (D A O h M N O h O (D O O h n O p .2r 00 O o O h h h C) r O M 00 M n n h O r O M d' W (D `® �t V to U) 'd' 'ct 'd' U) U) U) et zr t 't V It N U) LO VT M M Cl) Cl) M M Cl) Cl) Cl) M M M M Cl) M Cl) Cl) Cl) M Cl) M A O r h N M r r O tO O O O O r O r O O O O M O O O O O O O h r h r L O O O O O O O O O o O O O O O O O O O o O o O O O O O O O O V' U) 't N r U) O r tO O N r O 00 U) N r �N M^ r} n r O M (A 00 M h n e1: I� CD M h N M M M M M . A F C) o CV r r Co 0 o r C) N O C) 0 0 C) 0 o Cl) CO N d $ h n n n LO M d' n n n r h n N d' r n h h ►. y v t` h h to (O Cl) t- r- � O ti r- (D co M 3 M Cl) O ® w rL O O O O N O CD O O O O O O n r d' O O O O O d a) t() tC) to to U) M O U) U) In U) U) to U) M O to U) Uo O O ® .r O r r r r N r O r r r N CV J h 00 00 O N O r O to d' O O h CO n' h r OA M U) O O W O LO t` O U) O O (D O to h n O CD O 0A h N N 00 0 o Oh ti r` O 0 o Cl) 00 00 r r rl- Co o O M M, E = d `✓ It M It M to Cl) LO Cl) �t M rt Cl) Iq M LO Cl) LO co u) M v M v Cl) v M et M -It Cl) v M to M to Cl) LO Cl) a Cl) v Cl) I- O O to OO LOO O O (D 00 h O O to O O O n N 0 N y > v r r; r n O o M 0o N r; CD (D to o 00 r-� M 00 to 0o O 0 co m r r N r: (D o U) o 00 n M w U) o CO of CO o > E 'd' et 'et' tet' V' V' V M I '[Y 14, 1.41 'd' �' '�t M M M V' M U) ® Mm M Cl) M M M M M M M M co M M Cl) M M w (0 O O W Cl) N O 00 N n (O O O O O (D m 00 N h ? Nt L_ d V h M n oq h t() O CD r N N 'V: r r CD CD O U) O O LU 70 ... o r M r O O M r r O r O O O r r Z J N c VU 00 00 00 00 00 00 00 00 00 00 O O0 00 00 00 O0 00 00 Opo " � LL U) " i r r r r 'r r r r M r r r r N N 6 « CU (U C (N M U) CD h 00 O O r N M et to (D n OO M O M O V' r d' N 'd' 0- Z J `-' N N N N N N N N M M Cl) Cl) M Cl) Cl) CO Cl) d CL O V) C V' N N N to O r M r M (D O N O O T r O O O O O O O O O O O O ® 04 O O O O O O O O O O O O O O O O O O O O O 00 N U) O O O O O O O O O O O O O O O O O O o Y v n tl- T O o O o 0 0 0 o O O o O o O O O O O L) o 0 0 T P r r T - r T r P r P r T P P r T (D o0 It U) N 't O I- dt ch Cl) O t- (D 00 d' O r (!') t- r O N N O M U) M t`. N O O M N O O O O O O O O N C O F v (D N r N U) T O O r M O O O O O O O O O O O Y V W r O M O T O O O O O O O O O O O O O O O O co O d .G O O O O O M O M n 'd' r O M M N O U) M t() V ttOn r O O M N O N O O O O O O O O " ca N tC°() ltDo t(°o O Q' O O O O O O O Co O O O O O O O O O O O O O O O O O O M O P M (D 1- t- N M O M T to M C O �s- .� (D to (D to (D to (D to (D Uo r T N O O M N M M O N O to r CO O O O O O Cl) O O O O O O U) o N O O O O O O O O O O O O O O O O O O O O O N M ti '�t M N M 1` N M 00 N -q 00 O (D M 00 M N O T O V (D It (P N O (D 00 O U) M W N9 N (fl (D (D O O O N N t� N N f- ct N � N 4 (17 N N t-- tC) CV N t- � M M M M M M M M M M M Cl) M M M M M M M M (DV) T M M M CD O N O T O O r M r CD T O h O N O O O ' O r O N O O O O O r O _ `� O O O O O O O O O O O O O O O O O O O O O O t` N 0 to to U) to O N M U) O W w � M U) t` (D t- d' 14: U c1' tl aD C M O c. O = O C � � r r 1- ti n I- � ti 'ct CMD. � ti r r N r Q c P r r P r T P r O Cor T O T r T r r E z O O O O O O O N 00 to O O U') (D Co M O 0 O 1n Cl) O O M O U) O M V' M (D v LO (n to U) U) U) (n to CD to to ❑ r T r r O O r O O T T O r O ,J r M O O 00* (D ^ N 00 U) M (() t- t` O M O O lD MM to 0) O O r (D (D 'd' M (DM _ U) M (O t -:r M O q T (D N t- N � t` M 4 N N ' U) N CV h t!) CV CV f M M M M M M M M M M M M M M M M M M M Cl) M V O O T It t N CD to O O 00 O O O O O M O O tC) O O M M O T O M O T U) M M P O O N M r O T to (D m M co M 'd' ' 1 O 'V' M M (D h -,TW (D CD r r C O) rY 'd '�t Vt It d' M M 'IT Cl) co d' Cl) C M M M M M M M M M — M M Cl) M M M Cl) C N CD 0) M O N O eY M V' O O O O O O O O J 03 (D N 00 r Cl) 00 00 N N CO (h Cl) M N N M M Ch Cl) N It U) U) N T "T M V' N r r r U) It N N T O O O O O M M CO N N ti � M M M C:) to to M M w- (n c (D to (D to (D U) (D U7 (D to r T N O Cl O (O 't r r O N O N r N O O O 1` O O N O O O O O T O v O O O O O O O O O O O co O O O O O O O O O J Y O N CD (D V' N M P r N t` M to 00 h N -M to r N to M to CD r-� CD M O T (D M to M M r O r O M M U) M -t 4 U j 04 � It 'IT LO (N LO 'IT W d `.-' 'd It too too to toto 'd tt M VM' M to M Cl) M M Cl) M M M M Cl) M M M Cl) Cl) Cl) Cl) M M tp $ r M r Cl) r Cl) M M CD O O O r O O O O O O O O O O O O O T. O y4) O O O O O O O O O O O O O O O C7 O O O O O U) U) to to tC) O N O (D r co 00 O O (A r M V d' to U) d' c!" d' V. -5:O O (D N T t- M O O M CD CD O 4 to t` E ttl d' 'c1' M N O O CV r O T C7 T O C0 O O U) _ $'ti r r t� r V M n t` 1-0 U) n r -N U7 n h O t- O d' r h N CO Cl t` t` 'd' N 3 P r P P r P r O T r P O r r r r r T 0 ❑ W Q,O O (f') O U) O to O to Co to O to M co V: U) M O to O to Cl ti O O Cl to O In N T O O O to O to 'd' O Q ll) r T r r O O T O r T r T r P T JT U) M 00 T V M U) 1` r M [O M to 00 t� ti O M O O T (P U') t() (P O CD (fl M v M r (9 CO 0) O N N I M CV N It to NN 1` to v N to N to r- It E M t Cl) It M v M to M to M U) M v M v M M U) Cl) to M v M V M to Cl) to M �t M M M M M !n .Lr 00 O O d' 'ct N O O O O O O co O O O M O M, •O 00 O O O M O r O M 0 N d d N O N r N t!) M (D M M V' O 't O (D U) Cl) U) M CQ to M 00 Cl) (0 (D (D rF (0 r- (D N r .� � 4 't T r1. d. 't v V' d' d' v � v v 'd' v v 'a' v w(0 to — M Cl) Cl) Cl) M Cl) Cl) Cl) M Cl) M M M M M M M Cl) M M � L CD (D CD (D (D 00 M O 00 00 M r (D U) to 00 Cl) Cl) r co to N (O to M 00 M O Cl h t- h M 00 Cl) �F W -a) M O 00 OD U) r O N O O O O Z 1` (M r O T N r T r J 0000 00 00 co co 00 00 00 00 00 00 00 OD 00 00 co 00 OD (2 co V" :.: v P r r P r r r P P P r r r r r T r k C C v M U) CD h 00 M O N M 't U) co to t- 0 00 0 M U) Cl co CD N O M (D d C Z It U) 0 U) to 0 to L O N C M NO N W O N O M O O O N O c � 0 O O O O O O O Yv O O O O O O Co O O O O O O O U E CO O u CAN NN.. W O t` CY) M �"' N CO CA O O W O N CA , C O Q 0 . O 7 O O O O O CV _ W `'� O O O O O O O WO d M O M ONO Cl) O M W v o O o M O o o Q 0 0 0 0 0 0 0 M N M co to Cl) M c C/± o N C! o M o 0 0 -- -- 0 0 0 0 0 0 0 COO c~- N (00 'IT N N W d t V � fl - to Cl) 'd M Cl) M M It M Cl) d y O 00 Cl) O O " O OO O O r O O O O O t` O• N N N � M M O fU g > v C N CV CV c- O d ` O 0 N CL Fr- (O d• — 0 O O O O (a W N .o Q c r C7 O O O _ Z CL v Lq rn rn Cl ti rl�m ti p 0 0 0 0 0 0 CD C~O O N CClj N N N 2 N "T 4 tC) Cl). 't`~d• Cl) M M M IT M 't M > r r M O T ' Lr) W d) y M M M M M Cl) Cl) C (y O W O Cl) d• O O J ` N N CMC) - N (O O V N O N h !n O O O V O O O °. .� O O O O O O O W �N Iq N N CD (0 r -F Lo ' d � -It I Cl) M Cl) Cl) Cl) M Cl) 7G O O O O O O O O O r ((D Cl) r m M O N C ` cc O' v n coO M Vim' M 0) 0) O ® R C d = > tW0 Cl N dM' N N N CLo co 'd ^V I Vr' � M Mm Cl) Cl) M M N (O > O7 cq 7 7 O C " Lo E E �' fn w y 't d' d' V d• Ip Cl) Cl) M M M M M CV � L w v � CMO M M N N Lo LIJ 00 v r CV r O O Z z J �p U w c v W co W W W W W LL U N d 0 C ..J v It (O CC) CO W W 1- 0 co CO O 0 O r- d I Stantec APPENDIX Jul. 17, 06 4.11 APPENDIX 11: TRACT 6557 STORM SEWER HYDRAULIC GRADE LINE PROFILES STANTEC v:\projects\270054.001drainkdrainage report_tr6557.doo 4.27 LO C) C) N E2 CD Vj kd U) E - ------------- C) O .2 U) 3: UJ D oc All, UA c! i 11 4T 041 pL o C) lEl > Lo! f .-R ul C) q 6 41 cq CD LO !is El > > CD -T -TT (D C) FU O C)CD C) CD CD co W) m co0) co co co co M m C LO 0 N w Q H N cD O 3 c9 Oui o %r <rI.L 2 �� MM® ' N 0 3 LO • { O l .� P WI + W19 C/) n I E T { i z I o w Q ' j C •�t C t N' i I O U4 m3Ip i �c tt k� O o t t ^ Y L 4- ` �j .�y� T C J O V "�WW �+- ch Lu7u� P! MMM P p to .T TV ui ^ 0: 1� �Wp o j i I k i I O i � ! 3 : i '.O I : I C 1 1 co O c6 0 M1 t .OX i -w dt I t O LO j0a, Cf) M "4LIE +i LIJ i ' 3 O ® Q qO p O � (.0 M m L M It M M d W LO 0 a, c M 3 p -o to tL Cl) (gy14 p qk, U) c W U id MMS p p v7 � LO I ( +ULJI Lo. LP W i cc fA' {C j ^I , f i CD LO i i 1 j p U ^i E p W i N i i o i UJ •� vWm i ! N { Lo Ul I N p LO V I Lol 'R' �lv. y , � r C4') ((7 d ;> >: -1 -. II ca i d I i to N i ( O O { i i y 3 i i( o { j O C) Q'in W p N tfi M ,N` In ch O Ci. C) O w O O ® � O O p O O y (O O M LO M (Y) (rj (7 � M W C) C) 04 C) 0 0 E W 00 .2 (n C� Lo C) to LO 'C U-> oc L4 4 C) C) CD CY) LO (Y) 0 G Lf) U-) cy) w Lo to C? uj O co cq Ci LL4 W w C) C) 10— C, Lf) C\l C) LC C, c C) LO C) U,' cy L6 'lob 31 L C) LO CP C?j ci) 8 U4 W W I > > U) CKI C) C) C) C) C! O CO (0 (Y) (Y) LO LO Mce) (Y) M ui 04� , pl.� I C) C) C\l 0 & U4 E 0 0 c! C� LO co 0) CY) co +C) w kL 7-7 H;H C) i�5 is; � T oi L4 LO Lo U?C14 09 M 1 VC TUJI Ljj cc) C) !> > rj) U-) orl; C) Lo LL -j C) LO Lj C: "a Cb q - 14 j: �n. Lo id, (61 C) !C? C? • CD A W, LLJ 'E C) CDO C) q M 0) (0 LO CY) L6 LO c1r) Lo Cf) t— It ce) (Y) 't (Y) CY) LLJ O LO 0 N LO Co � -.03 N V CI c 1 O Cq Lo i/) E 2 co MLO LU UM M W M o (� 77 LO W W O m V '' ( 1 M S Q A I i ' 1: i. 2 i I , t 0 LO j C LO bi I { 1 0 4 I CO Lo as 0c): co: LO ^ i } y E o q t i � o LO i ! o LO{ M IJ to c 4 d C CQ E i O O d O LO N LLf w o N I i I ( i i O O N I LO I t Iy i 11 I o t 106 q ,.Ao O i c"J I` j iI , I i � Mi M: j ! LO o 0 0 0 0 0 0 0 0 d CD co ip LO co co co dM M M W I C) C) C) CD C) O C) Q C� m C-� vi 00 (D (D LO 'IT M m (Y) co co Y) n N O LO r%- 04 C) LO N LO cq w. OO cq ti C) LO LO 04 C) C) LO I- C) LO LO C\l R to 17 LO co CD LO LO 04 C4 In 04 04 10 c 00 w .41 LO ct al LO iz 44 Wit 04 l U .r C) H L 0 N WW2 W ^ LO u C J Q d- (6 M ^ co to + cfl W W i itca I 4 > W 65 1— Q C } LO Lo T 2 , ' I O LO � f t i 2 C11 S 1 ' k 7It ®w � M Ln } I � t I I N } jj I o CD ta Ul C5C4 ®oth ij �ici L ww j 4 ►i I a LO N C14 LO M CO OD M M LO M c1r) M W C) C) C) C) C) C! q N— LO (D LO U') ";T (Y) M0 ce) CY) LO I -- LO C14 C) I m C) C) CD CD CD Ln Ln cr) m C:) C) C) C? CD p v— p 06 ko P. % --- I cl-) t, S > ED CD jz: Cr} CC) co 00 -9 U-1 M CD ko CC) C) C) CD v— p CD P. % --- I C:) t, LAI > ED ko Cr} CC) co CC) -9 U-1 In LD C") C) co 24 9 ko ai C=) C=) P. p Qo LAI Tr Nd" Cr} cr) ai Lf) CC) rw- L.r) CN 99 9 2rip] > a) C) C) m C:) CD C:) Col COI p ko "Cr cr) uj p p C? C? C:) Lf) cw-) LDL) (Tr Lf) CC) rw- L.r) CN 99 9 2rip] > a) C) C) m C) p cr) LID CD C:) Lf) cr) C:) ;may. cr) C) CC) COI p ko "Cr cr) uj ii C:) C:) Q C:) 6 LD LID LD (Y') (Y') co CD CD C) O cz:! p ko (L4 W LF) C) C:) C:) Q C:) 6 LD LID LD (Y') (Y') co CD CD C) O cz:! p ko Zd- lat C) C) CD C) C) p C? C) CP Ul r cr) > ko ko 14- .(D co co co co LU 571 to co mw Ln CN BE C) C) C? p I— Ln 'cr 'cr co co ig 2rc IT H, 7071 � � CD CD CD Q C? p 00 Ln (14 tn Lf) Li-) c1r) m CO co CD C) C co co C) !C r) c) Lur) CD ;3' LD {ti ) LD C14 9 C) col C) C) C) C) *,� 00 ko cq cr) c1r) > W co cw-) Ln 'cr LD Lf) (Y') LLJ LD .C— A 10 4i A, �i � Im w I I I I I r I R I I C:) C) I I I i- I I C) C) I i C� C: C� iD Q uj C) z co C) CD C) cz C? p kL P 0 z CIF) CC) O cy') cr) > LD LD LD AZ co co r -S m C) w 01 LD L) C:) C) I I I i- I I C) C) I i C� C: C� iD Q 6 C) z co C) CD C) cz C? p p P CIF) CC) cr) cy') cr) > LD LD LD AZ co co C) w LD L) ID CD C) I I I i- I I i '� i I ! I I i C: a i iD C:) 6 C) z LAO C) Co C) 9 A 9 H I I I i- I I i '� i I ! I I i I# a i C:) C) C) C) C) C) C) cz C? p p P Cd- > LD LD LD AZ co co cel w S \ MET I 1-6 LD 03 W Of CD Ln Ln I* - LD � CD o p C LD a)Irr � co co � m co cr) m co W N 9 A A En C ai u. U a) O CL 2 WU LU U- 7 0 O Q (� M C, w w� d xz �w ;I0 2 ® LU3 co CIO ix 1-6 LD 03 W Of CD Ln Ln I* - LD � CD o p C LD a)Irr � co co � m co cr) m co W N 9 A A En C ai u. U a) O CL I m G �/C LUMIYU ULAJ,) LAM: ........ .......... U AREA 28 0.1 1 ACRES L=93 FT T—A,-7, 638 7 ABRA WAY T............ > Z AREA 4 0.36 ACRES RFRK�141PF PnA n - -------- - ---- — --L= 209 FT--===o.-- ACT 6 '187 LEGEND ESS/ ..... .......... SURFACE FLOW DIRECTION DRAFTED BY. CONCENTRATION NODE NUMBER (CATCH BASIN NUMBER) i2 f 29 (18") STORM DRAIN LINE NUMBER (STORM DRAIN PIPE SIZE) AREA 35 ,„w.�„, �� �, .�,,.._ ...,...... ....... ......msµ.....,...,,.... 0.11 ACRES TRIBUTARY AREA TRACT 6557 L= 93 FT LONGEST WATERCOURSE LENGTH 7114106 ROGER D. HANEY DATE WATERSHED (TRIBUTARY AREA) BOUNDARY k"; I I t:$ "lmv� OF AKERFIELD" OF ACT 6 '187 LEGEND ESS/ ..... .......... SURFACE FLOW DIRECTION DRAFTED BY. CONCENTRATION NODE NUMBER (CATCH BASIN NUMBER) No. C-47354 29 (18") STORM DRAIN LINE NUMBER (STORM DRAIN PIPE SIZE) AREA 35 TRIBUTARY AREA NUMBER RDH 0.11 ACRES TRIBUTARY AREA TRACT 6557 L= 93 FT LONGEST WATERCOURSE LENGTH 7114106 ROGER D. HANEY DATE WATERSHED (TRIBUTARY AREA) BOUNDARY k"; I I t:$ "lmv� OF AKERFIELD" OF STORM DRAIN LINE DATEI REVISIONS EXISTING STORM DRAIN LINE (TRACT 6387) CATCH BASIN ji ti cj .......... ti . ........... OUTLET STRUCTURE c ..... .. ....... . ........ .... . ........ .... ........ .... . . ACT 6 '187 ....... LEGEND ESS/ ..... .......... SURFACE FLOW DIRECTION DRAFTED BY. CONCENTRATION NODE NUMBER (CATCH BASIN NUMBER) No. C-47354 29 (18") STORM DRAIN LINE NUMBER (STORM DRAIN PIPE SIZE) AREA 35 TRIBUTARY AREA NUMBER RDH 0.11 ACRES TRIBUTARY AREA TRACT 6557 L= 93 FT LONGEST WATERCOURSE LENGTH 7114106 ROGER D. HANEY DATE WATERSHED (TRIBUTARY AREA) BOUNDARY k"; I I t:$ "lmv� OF AKERFIELD" OF STORM DRAIN LINE DATEI REVISIONS EXISTING STORM DRAIN LINE (TRACT 6387) CATCH BASIN STORM DRAIN MANHOLE .......... o OUTLET STRUCTURE c .... . ........ I? f ................... C/ 64412, 5y f ... . ......... . ..... . ............. ..... .......... ....... .... .... ..... ..... ESS/ ..... .......... . . .................................. GRAPHIC SCALE 100 0 so 100 200 ( IN FEET ) 1 inch = 100 ft. DESIGNED BY: PB PREPARED UNDER THE SUPERVISION OF. ESS/ PROrkj% u DRAINAA00"E MAP% PROJECT NO. 202500500 DRAFTED BY. PB No. C-47354 STANTEC CONSULTING INC. CHECKED BY: RDH Ex .12/31/07 1400 18TH STREET BAKERSFIELD, CA 93301 TRACT 6557 SHEET I 7114106 ROGER D. HANEY DATE StanteC 661.616.0000 Oanwcom k"; I I t:$ "lmv� OF AKERFIELD" OF DATE: DATEI REVISIONS #` r :f . /' 1