Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Hageman Road Flyover Project Final Drainage 01-12-2010
FINAL PRELIMINARY DRAINAGE REPORT Hageman Road Flyover Project 06-Ker-99-PM 26.7/27.2 EA 06-484500 Prepared For: California Department of Transportation 1352 W. Olive Avenue P.O. Box 12612 Fresno, CA 93778 Submitted By: City of Bakersfield 1600 Truxtun Avenue Bakersfield, CA 93301 Prepared By: AECOM-LAN Engineering 618 North Diamond Bar Blvd. Diamond Bar, CA 91765 January 12, 2010 Hageman Road Extension 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT i TABLE OF CONTENTS 1. INTRODUCTION ...................................................................................................................1 2. HYDROLOGY.........................................................................................................................2 A. EXISTING CONDITIONS.....................................................................................................................2 1. EXISTING LAND USE & SOILS...................................................................................................2 2. RAINFALL CHARACTERISTICS..................................................................................................2 3. FLOOD PLAIN ............................................................................................................................2 4. CLIMATE AND TOPOGRAPHY....................................................................................................2 5. EXISTING DRAINAGE PATTERNS ..............................................................................................3 6. GROUNDWATER TABLE ..............................................................................................................3 7. OFFSITE RUNOFF CALCULATIONS ..............................................................................................3 B. PROPOSED CONDITIONS...................................................................................................................3 1. PROPOSED DRAINAGE PATTERNS.............................................................................................4 2. STREETS.....................................................................................................................................4 3. PROPOSED DRAINAGE FACILITIES ...........................................................................................4 C. DESIGN CRITERIA.............................................................................................................................4 1. DEVELOPED CONDITIONS .........................................................................................................4 3. METHODOLOGY ..................................................................................................................5 A. HYDROLOGY.....................................................................................................................................5 B. HYDRAULIC ......................................................................................................................................5 4. SUMMARY OF RESULTS ....................................................................................................6 A. DRAINAGE AREAS.............................................................................................................................6 B. HYDRAULIC STRUCTURES................................................................................................................6 C. FACTORS AFFECTING RUNOFF ........................................................................................................7 D. BASIN VOLUME CALCULATIONS......................................................................................................7 5. REFERENCES.........................................................................................................................8 6. TECHNICAL APPENDICES.................................................................................................9 A. HYDROLOGIC DATA B. RATIONAL METHOD HYDROLOGY CALCULATIONS (Nodal Diagrams) 1. PROPOSED CONDITIONS C. UNIT HYDROGRAPHS 1. EXISTING CONDITIONS 2. PROPOSED CONDITIONS D. RETENTION BASINS – CONFIGURATION AND VOLUMES 1. EXISTING BASINS 2. PROPOSED BASINS E. CONDUIT HYDRAULICS 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT ii E. CONDUIT HYDRAULICS F. NORTHWEST BAKERSFIELD AREA DRAINAGE STUDY EXCERPTS G. EXHIBITS (Map Pocket Material) • DRAINAGE MAP – EXISTING CONDITION • DRAINAGE MAP – PROPOSED CONDITION • OVERALL DRAINAGE SYSTEM 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 1 1. INTRODUCTION This report presents the design considerations, methodology, and results of drainage analyses performed for the proposed extension of Hageman Road. The project is located in the northwest corner of the city of Bakersfield and extends from the existing terminus of Hageman Road 0.62 miles west of State Route 99 (SR-99) to Golden State Avenue (SR-204). The City of Bakersfield is located within the Kern County. This report addresses the drainage issues directly associated with the Hageman Road Separation of Grade project as well as adjacent offsite drainage issues directly impacting the site. Hydrologic calculations were performed for the developed condition of each area draining to existing retention basins (R3, R6 and R5), as well as for the new Regional Retention basin A. As required by Caltrans criteria, the water depth in basins R3, R6 and R5 is less than 3 feet with 2 feet of freeboard, and for Basin A a water depth of less than 8 feet and 2 foot minimum freeboard as well. In addition, hydrology area analysis has been conducted to compare the post-development drainage patterns with the existing condition with respect to overall areas draining to downstream major discharge points. The Hageman Separation of Grade project (Project) consists of construction of a four-lane arterial from Hageman Road at Knudsen Drive to Golden State Avenue (SR-204) just east of SR-99, with new bridges over Beardsley Canal #1(or possibly a reinforced concrete box), San Joaquin Valley Railroad (SJVR), and SR-99. The project also includes widening the existing Airport Drive Undercrossing (Bridge Number: 50-0475), modifying the existing ramps at Airport Drive and Golden State Avenue, and widening Golden State Avenue. The extension of Hageman Road will improve mobility between the northwest section of the city and downtown Bakersfield and relieve traffic congestion on the east-west routes along Olive Drive and Rosedale Highway. The purpose of this report is to establish that the proposed on site drainage facilities within the project limits meet the design criteria set forth in the Caltrans Highway Design Manual, the Caltrans Central Region Hydraulics Design guidelines, and County of Kern standards, and that the facilities protect private property and the freeway against flooding. Based on our review of the existing Drainage Master Plan as shown in the Northwest Bakersfield Area Drainage Study and provided that the proposed drainage system is implemented as designed in this Drainage report, the project will achieve the stated objective from a drainage perspective. Since the proposed development will not produce an increase in peak runoff, the downstream storm drain facilities will not be impacted by the Hageman Separation of Grade project. 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 2 2. HYDROLOGY A. Existing Conditions The project site is located in the City of Bakersfield, in the County of Kern. The major cross streets are Hageman Road, Golden State Avenue (SR-204) and SR-99. Currently the Burlington Northern Santa Fe railway (BNSF) runs north and south crossing the SR- 204. 1. Existing Land Use & Soils The Metropolitan Bakersfield Plan Land Use Map was reviewed and it is noted that the site consists of developed and undeveloped industrial land uses. Per the existing Log of Test Borings (LOTB) contained in the Preliminary Geotechnical report prepared by Blackburn Consulting (June 2009), the soil within the upper 15 to 20 feet of the site consists of medium dense, poorly graded sand, gravelly sand and sandy gravel. 2. Rainfall Characteristics The project area is located in the San Joaquin Valley watershed. The intensity–duration depths were provided by staff at Caltrans District 6 and are included in Appendix A. 3. Flood Plain The entire site lies within Zone X, Community No. 060075 and 060077, effective September 26, 2008. Zone X represents an area outside the 500-year flood plain. A copy of this FIRM FEMA map is included in Appendix A. Data from the National Wetlands Inventory show the existence of 10 mapped wetlands in the general vicinity of the proposed alignment (see attached copy in Appendix A). The Kern River is recorded as one of those wetlands with the nine others shown near the project. Hageman Separation of Grade project will not discharge runoff to any of the above mentioned wetlands. 4. Climate and Topography The Tulare Basin experiences the Mediterranean climate with cool, moist winters and warm, dry summers. Based on rainfall quantities, the southern and western regions of the basin can be classified as desert climate with less than 6 inches of annual rainfall. Dense ground fog, also called the "tule fog" develops during the nighttime and can persist through daylight hours for days and weeks resulting in damp, cool weather. The project site consists of relatively flat terrain. The area slopes gently to the southwest and southeast on the western and eastern portions, respectively, towards the flood plain of the Kern River. Other than the SR-204 and the SR-99 the adjacent area is currently undeveloped and the drainage patterns vary for each drainage sub-area. 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 3 5. Existing Drainage Patterns The SR-204, SR-99 and BNSF railway act almost as ridgelines to the project site and it divides the project drainage area as follows: Area A is the biggest major area of the project and covers a small portion of SR-99, and the remainder of undeveloped land between Beardsley Canal to the west, BNSF on the east and existing dirt road to the south. Discharge from this area flows southwesterly into the open space south of the existing Hageman Road and east of Knudsen Road. Hydrology drainage areas EX 1, EX 2, EX 3, EX 8, EX 9, EX 10, D, H, I and J are located north of SR-99 and SR-204, and areas EX 4, EX 6 and EX 7 are located south of SR-99 and SR-204. Area B consists of land between State Road and SR-99, and SR-99 up to the existing Minkler retention basin; Area C and Area EX 5 covers SR-204 and SR-99 up to Rio Mirada Drive, and Area E is the area draining to existing Basin R3. For Areas E, F and G draining to the existing retention basins, no existing hydrology reports were found, so unit hydrographs were developed with the unit area layout for Area E, and unit hydrographs were developed using the same time of concentration as in the rational analysis for proposed Areas E and G. See Appendix G for an exhibit of “Existing Conditions” showing existing major canals, gravity and siphon culverts, drainage areas, and the existing storm drain system configuration. 6. Groundwater Table Per the existing Log of Test Borings (LOTB) groundwater was encountered at about 20 feet below the ground surface (about 383 feet Mean Sea Level). Ground water was only shown in borings for the Airport Drive Undercrossing LOTB. 7. Offsite Runoff Calculations Offsite Runoff Calculations were not performed for this Drainage Report. As shown in Table No.1 included in Appendix A the total acreage for all of the offsite areas not draining to basins A, R3, R6 and R5 is either less or equal in the proposed conditions versus the existing conditions. B. Proposed Conditions As mentioned, the proposed project consists of extending Hageman Road (east of Knudsen) to the east, and providing an east-west connection across the SR-99 between Knudsen and the SR-204 (east of Airport Drive). The proposed project will maintain the connection between the westbound SR-204 and the northbound SR-99. Also, the existing connections between the Airport Drive ramps and the northbound SR-99 will be maintained. 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 4 1. Proposed Drainage Patterns The majority of the site, other than the proposed extension of Hageman Road, will maintain its current drainage pattern. The Hageman Road extension is part of two drainage areas which are separated by a high point on the proposed road. West of the high point the road is part of area A and east of it the road is part of area E. No inlets will be necessary on the bridge portion of the road. For Area A, flume downdrains and concrete ditches constructed at the bottoms of the slopes will carry the runoff to Regional Basin A. The reconstructed portion of SR-204 is part of two major areas, Areas E and G, and the proposed storm drain systems along the road will discharge to the reconstructed retention basins R3 and R5. See Appendix G for the exhibit of “Proposed Conditions” showing the proposed drainage conditions. 2. Streets The Hageman Road overcrossing and overhead will span over northbound and southbound SR 99, the southbound SR 99 to SR 204 connector, and the SJVR railroad track and right-of way. The structure is 78’-11 ½” wide with seat type abutments and driven piles at each end of the bridge. The cross slope is 2 percent on the tangent sections and varies on the superelevated sections near the end of the bridge. Most of the runoff from the structure will drain to Retention Basin R3. 3. Proposed Drainage Facilities The proposed storm drain facilities will follow drainage paths similar to the existing conditions. In addition, some of the existing storm drain facilities for basins R3, R6 and R5 will be reused for this project. The overall drainage system map is included in Appendix G, and the detailed drainage system for each retention basin is shown in Appendix D. All proposed drainage facilities in Areas A, E, F and G outlet to the Retention Basins A, R3, R6 and R5 with the drainage system sized for a recurrence interval of 50 years. C. Design Criteria 1. Developed Conditions Drainage facilities within Caltrans’ right-of-way will be designed to Caltrans requirements; areas beyond Caltrans’ right-of-way will be designed per Kern County standards: Retention Basins (Caltrans):...........................................(2 Storms) 10-year-24 hour Storm Retention Basins (Kern County):...................................(1 Storm) 100-year-24 hour Storm Catch Basin & Laterals:........................................................................ 50-year Storm Event 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 5 3. METHODOLOGY A. Hydrology All hydrologic calculations performed for the project are in conformance with Caltrans Central Region Design Criteria and Kern County Hydrology Manual. The following is a brief explanation of input data used in the hydrology calculations: Hydrologic analyses were prepared for the proposed conditions. The 50-year and 100-year peak discharges were estimated using Rational Method procedures with the rainfall data provided by Caltrans and as shown in Appendix A. Existing soil types were determined using the Kern County Hydrology manual, the Natural Resources Conservation Service (NRCS) website and matching soil types values used in the Northwest Bakersfield Area Drainage Study. Advanced Engineering Services (AES) was used to perform the hydrologic analyses. The results are shown in Appendix B. Please refer to Appendix F for a copy of the Northwest Bakersfield Area Drainage Study and to Appendix G for the existing and proposed conditions drainage maps. B. Hydraulic The hydraulic calculations for the conduit hydraulics were performed using Haestad Methods by Bentley Systems, Inc. The results are included in Appendix E. Only the Beardsley Canal crossing, the 5’x 5’ RCB culvert under Hageman Road, and concrete ditches No. 1, 2 and 3 were analyzed for this report. All other proposed and reused drainage systems will be analyzed during the PS&E phase of the project. 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 6 4. SUMMARY OF RESULTS A. Drainage Areas As shown in the Drainage exhibits for Existing and Proposed conditions and in Table No.1 included herein, the Hageman Flyover project reuses and enlarges existing basins R3, R6 and R5 and proposes a new Regional Retention Basin A. Rational method hydrology was used to calculate Q50 for areas A, E, F and G and, using the time of concentration from the rational method, unit hydrographs were developed for each of these areas. Runoff volumes were developed in accordance with Caltrans and Kern County criteria for retention basins. Regional Basin A will contain the runoff generated by Area A (78.6 acres) and will be designed per Kern County standards since it is outside of the Caltrans right-of-way. The basin will have a maximum water depth of 8 feet, an access road, and a fence enclosure. Major Area E drains to existing Basin R3. In order to comply with the three feet maximum water elevation criteria, this basin will be regraded and retaining walls will be constructed on the west side. Details for each proposed retention basin are shown in Appendix D. Runoff water from Major Area F drains to existing Basin R6 which will then be diverted to Basin R5 once water reaches a depth of 2.75 feet. Water is conveyed to Basin R5 through a proposed 24” culvert. Basin R5 will be regraded and retaining walls will be constructed along the east and north sides of the basin. The total volume of these two basins will accommodate the runoff volumes produced by Areas F and G (see Table No.2 at the end of Appendix D). The total acreage for Areas B, C, D, H, I and J is less in the proposed condition than in the existing condition and since the storm runoff values follow a proportional relationship to area, no rational method was calculated for this report. The acreage of Areas EX 3 through Ex 6 - which are adjacent to the project - will remain the same for both the existing and proposed conditions, resulting in no increase in flow due to the Project. All the other areas shown on the existing and proposed drainage maps are shown only for drainage pattern clarity. Excepting Areas EX 9 and EX 10 which drain north, all of the areas have local sumps mitigating the existing development runoff. B. Hydraulic Structures The hydraulic structures calculations for Beardsley Canal crossing (double 6’ x 11’ RCB, Alt. B), the 5’x 5’ RCB culvert under the Hageman Road extension, and all the concrete ditches were performed using Haestad Methods by Bentley Systems, Inc. The results are included in Appendix E. The Beardsley Canal scour has been identified as an important element and will need to be investigated appropriately during the PS&E phase of the project. 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 7 There are existing culverts that will also have to be addressed during the PS&E phase. These include the existing 10’ X 10’ RCB vehicular crossing, the existing siphon culvert at Cross Valley Canal, and the existing culvert at Area J that will be extended through the proposed retaining wall and otherwise protected in place. Cross Valley Canal and the Calloway irrigation canal are within the vicinity of the project but will not be affected by the additional project runoff since the runoff will be retained in the existing basins within the reconstructed loops and in the new Regional Basin A. Existing drainage inlets and storm drain pipes affected by the project will be replaced as needed to provide a minimum size of 18”. Flows will be directed to the reconstructed Retention Basins R3, R6 and R5. From the western portion of the Hageman extension to the beginning of the bridge, runoff will be conveyed to proposed ditches from the road using overside drains. The concrete ditches will be constructed along the bottom of the 2:1 slope. A proposed 5’ x 5’ RCB culvert will take the cross drainage from the area north of the Hageman Road extension to the new Regional Basin A east of Knudsen Road. This culvert will also serve as passage for the wild life (San Joaquin Fox). Overall, no diversion of water will take place for Hageman Road Flyover project. C. Factors Affecting Runoff For Area A where the Regional Basin A will be constructed, a condition of existing undeveloped was assumed for most of the 78.6 acres, and based on the Kern County design criteria, the proposed runoff volume was calculated to be less than 7.3 acre-feet. As industrial development takes place in the future, the Basin will have to be enlarged accordingly or each development will have to retain its proposed runoff on site. D. Basin Volume Calculations Per Caltrans Central Region 6 Basins R3, R6 and R5 are complying with 3 feet maximum water elevation criteria and Basin A with 8 ft maximum water elevation criteria per Kern County. Exhibits and volume calculations for each of the basins in the existing and proposed conditions are included in Appendix D, and Table No.2 summarizes accumulative elevations and volumes, the required design volumes as well as the basins provided volumes. 06-KER-99-PM 26.7/27.2 EA 06-484500 Hageman Flyover PA/ED Project PRELIMINARY DRAINAGE REPORT 8 5. REFERENCES Highway Design Manual, California Department of Transportation, 2006 Kern County Hydrology Manual, Kern County Natural Resources Conservation Service, August 27, 2009 http://www.nrcs.usda.gov/ SUBJECT: Hageman Flyover PHASE: PA & ED Drainage Proposed vs. Existing Areas comparison HYDROLOGY AREA EXISTING Area PROPOSED Area CHANGES Area Area (Acres) Area (Acres) Area (Acres) Area A-Basin A 78.6 78.6 0 Area B 33.8 32.9 -0.9 Area C 13.5 12.1 -1.4 Area D 6.1 4.9 -1.2 Area E-Basin R3 19.7 21.3 1.6 Area F-Basin R6 9.4 8.7 -0.7 Area G-Basin R5 3.5 7.9 4.4 Area H 4.6 3.8 -0.8 Area I 2.9 2.5 -0.4 Area J 8.4 7.8 -0.6 Area EX 3 3.4 3.4 0 Area EX 4 6.4 6.4 0 Area EX 5 1.4 1.4 0 Area EX 6 17.9 17.9 0 TOTAL 209.6 209.6 0 TABLE No.1 NOTE: Area EX 1, EX 2, EX 7 thru EX 10 shown for overall drainage pattern and clarity. Q:\BAKR0701 - Hageman Flyover\Drainage\Drainage Report\Appendices\Proposed vs Existing Hydrology Drainage AREAS.xls 10 APPENDIX A 35-24-0 N35-24-0 N35-24-40 N35-24-40 N35-24-20 N35-24-20 N35-23-20 N35-23-20 N35-23-40 N35-23-40 N35-25-0 N35-25-0 N119-2-0 W 119-2-0 W 119-2-30 W 119-2-30 W 119-3-30 W 119-3-30 W 119-3-0 W 119-3-0 W 11 APPENDIX B ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1991 KERN COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1556 Analysis prepared by: Lim & Nasimento Engineering Corp. 618 N. Diamond Bar Blvd, Diamond Bar, CA 91765 ************************** DESCRIPTION OF STUDY ************************** * HAGEMAN FLYOVER * * Area A to Regional Retention Basin * * Q 100 Calculations * ************************************************************************** FILE NAME: 1BASINA.DAT TIME/DATE OF STUDY: 15:06 09/10/2009 ============================================================================ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ============================================================================ --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* WATERSHED REGION: SAN JOAQUIN VALLEY LATITUDE (DECIMAL) AT THE WATERSHED CENTRIOD = 35.42 USER SPECIFIED RAINFALL VALUES: 2-YR 6-HR RAINFALL DEPTH(INCH) = 0.75 2-YR 24-HR RAINFALL DEPTH(INCH) = 1.15 100-YR 6-HR RAINFALL DEPTH(INCH) = 1.57 100-YR 24-HR RAINFALL DEPTH(INCH) = 2.76 RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 0.6400 SLOPE OF INTENSITY DURATION CURVE = 0.6500 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 22.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 104.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ============================================================================ INITIAL SUBAREA FLOW-LENGTH(FEET) = 184.00 ELEVATION DATA: UPSTREAM(FEET) = 437.50 DOWNSTREAM(FEET) = 434.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.407 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.059 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL B 0.21 0.36 0.100 80 5.41 PUBLIC PARK B 0.19 0.36 0.850 80 8.59 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.456 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) = 1.04 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 431.84 DOWNSTREAM(FEET) = 430.90 FLOW LENGTH(FEET) = 187.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.85 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.04 PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 6.50 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 106.00 = 371.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ MAINLINE Tc(MIN.) = 6.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.714 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.07 0.36 0.100 80 PUBLIC PARK B 0.10 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.541 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.39 EFFECTIVE AREA(ACRES) = 0.57 AREA-AVERAGED Fm(INCH/HR) = 0.18 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) = 1.30 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ MAINLINE Tc(MIN.) = 6.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.714 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.42 0.36 0.100 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF(CFS) = 1.01 EFFECTIVE AREA(ACRES) = 0.99 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 1.0 PEAK FLOW RATE(CFS) = 2.31 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 108.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 433.50 DOWNSTREAM(FEET) = 430.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1016.00 CHANNEL SLOPE = 0.0034 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 45.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.114 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK B 11.65 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.13 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.89 AVERAGE FLOW DEPTH(FEET) = 0.42 TRAVEL TIME(MIN.) = 19.07 Tc(MIN.) = 25.57 SUBAREA AREA(ACRES) = 11.65 SUBAREA RUNOFF(CFS) = 8.44 EFFECTIVE AREA(ACRES) = 12.64 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.81 TOTAL AREA(ACRES) = 12.6 PEAK FLOW RATE(CFS) = 9.33 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.47 FLOW VELOCITY(FEET/SEC.) = 0.95 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 108.00 = 1387.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ MAINLINE Tc(MIN.) = 25.57 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.114 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 1.83 0.36 0.100 80 PUBLIC PARK B 0.84 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.336 SUBAREA AREA(ACRES) = 2.67 SUBAREA RUNOFF(CFS) = 2.38 EFFECTIVE AREA(ACRES) = 15.31 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.73 TOTAL AREA(ACRES) = 15.3 PEAK FLOW RATE(CFS) = 11.71 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 110.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 430.00 DOWNSTREAM(FEET) = 429.10 CHANNEL LENGTH THRU SUBAREA(FEET) = 770.00 CHANNEL SLOPE = 0.0012 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 45.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 0.777 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK B 4.35 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.63 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.68 AVERAGE FLOW DEPTH(FEET) = 0.64 TRAVEL TIME(MIN.) = 18.95 Tc(MIN.) = 44.51 SUBAREA AREA(ACRES) = 4.35 SUBAREA RUNOFF(CFS) = 1.83 EFFECTIVE AREA(ACRES) = 19.66 AREA-AVERAGED Fm(INCH/HR) = 0.27 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 19.7 PEAK FLOW RATE(CFS) = 11.71 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.62 FLOW VELOCITY(FEET/SEC.) = 0.67 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 110.00 = 2157.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 110.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 44.51 RAINFALL INTENSITY(INCH/HR) = 0.78 AREA-AVERAGED Fm(INCH/HR) = 0.27 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.75 EFFECTIVE STREAM AREA(ACRES) = 19.66 TOTAL STREAM AREA(ACRES) = 19.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.71 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ============================================================================ INITIAL SUBAREA FLOW-LENGTH(FEET) = 1057.00 ELEVATION DATA: UPSTREAM(FEET) = 435.00 DOWNSTREAM(FEET) = 430.10 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.430 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.616 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL B 0.73 0.36 0.100 80 14.43 PUBLIC PARK B 8.01 0.36 0.850 80 22.93 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.787 SUBAREA RUNOFF(CFS) = 10.46 TOTAL AREA(ACRES) = 8.74 PEAK FLOW RATE(CFS) = 10.46 **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 110.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 430.10 DOWNSTREAM(FEET) = 429.10 CHANNEL LENGTH THRU SUBAREA(FEET) = 328.00 CHANNEL SLOPE = 0.0030 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.523 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.28 0.36 0.100 80 PUBLIC PARK B 8.53 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.826 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.31 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.99 AVERAGE FLOW DEPTH(FEET) = 1.39 TRAVEL TIME(MIN.) = 1.37 Tc(MIN.) = 15.80 SUBAREA AREA(ACRES) = 8.81 SUBAREA RUNOFF(CFS) = 9.69 EFFECTIVE AREA(ACRES) = 17.55 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.81 TOTAL AREA(ACRES) = 17.5 PEAK FLOW RATE(CFS) = 19.42 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.52 FLOW VELOCITY(FEET/SEC.) = 4.23 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 110.00 = 1385.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 110.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.80 RAINFALL INTENSITY(INCH/HR) = 1.52 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.81 EFFECTIVE STREAM AREA(ACRES) = 17.55 TOTAL STREAM AREA(ACRES) = 17.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.42 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 11.71 44.51 0.777 0.36( 0.27) 0.75 19.7 102.00 2 19.42 15.80 1.523 0.36( 0.29) 0.81 17.5 130.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.36 Tc(MIN.) = 15.80 EFFECTIVE AREA(ACRES) = 22.91 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.79 TOTAL AREA(ACRES) = 37.2 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 110.00 = 2157.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 112.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.10 DOWNSTREAM(FEET) = 428.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 648.00 CHANNEL SLOPE = 0.0008 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.323 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.61 0.36 0.100 80 PUBLIC PARK B 4.59 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.762 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.80 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.81 AVERAGE FLOW DEPTH(FEET) = 2.30 TRAVEL TIME(MIN.) = 3.84 Tc(MIN.) = 19.64 SUBAREA AREA(ACRES) = 5.20 SUBAREA RUNOFF(CFS) = 4.89 EFFECTIVE AREA(ACRES) = 28.11 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.79 TOTAL AREA(ACRES) = 42.4 PEAK FLOW RATE(CFS) = 27.36 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 2.23 FLOW VELOCITY(FEET/SEC.) = 2.75 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 112.00 = 2805.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 112.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.64 RAINFALL INTENSITY(INCH/HR) = 1.32 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.79 EFFECTIVE STREAM AREA(ACRES) = 28.11 TOTAL STREAM AREA(ACRES) = 42.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.36 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 142.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ============================================================================ INITIAL SUBAREA FLOW-LENGTH(FEET) = 1022.00 ELEVATION DATA: UPSTREAM(FEET) = 433.40 DOWNSTREAM(FEET) = 430.20 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 24.467 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.147 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) PUBLIC PARK B 5.54 0.36 0.850 80 24.47 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 4.17 TOTAL AREA(ACRES) = 5.54 PEAK FLOW RATE(CFS) = 4.17 **************************************************************************** FLOW PROCESS FROM NODE 142.00 TO NODE 112.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 430.20 DOWNSTREAM(FEET) = 428.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 914.00 CHANNEL SLOPE = 0.0018 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 40.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 0.754 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.19 0.36 0.100 80 PUBLIC PARK B 11.59 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.838 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.65 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.69 AVERAGE FLOW DEPTH(FEET) = 0.49 TRAVEL TIME(MIN.) = 22.11 Tc(MIN.) = 46.58 SUBAREA AREA(ACRES) = 11.78 SUBAREA RUNOFF(CFS) = 4.77 EFFECTIVE AREA(ACRES) = 17.32 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.84 TOTAL AREA(ACRES) = 17.3 PEAK FLOW RATE(CFS) = 6.98 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.50 FLOW VELOCITY(FEET/SEC.) = 0.70 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 112.00 = 1936.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 142.00 TO NODE 112.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 46.58 RAINFALL INTENSITY(INCH/HR) = 0.75 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.84 EFFECTIVE STREAM AREA(ACRES) = 17.32 TOTAL STREAM AREA(ACRES) = 17.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.98 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 27.36 19.64 1.323 0.36( 0.29) 0.79 28.1 130.00 2 6.98 46.58 0.754 0.36( 0.31) 0.84 17.3 140.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.32 Tc(MIN.) = 19.64 EFFECTIVE AREA(ACRES) = 33.54 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.80 TOTAL AREA(ACRES) = 59.7 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 112.00 = 2805.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 114.00 IS CODE = 36 ---------------------------------------------------------------------------- >>>>>COMPUTE BOX-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED BOX SIZE (PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 428.60 DOWNSTREAM(FEET) = 427.70 FLOW LENGTH(FEET) = 177.10 MANNING'S N = 0.015 *GIVEN BOX BASEWIDTH(FEET) = 5.00 ESTIMATED BOX HEIGHT(FEET) = 1.43 BOX-FLOW VELOCITY(FEET/SEC.) = 4.52 BOX-FLOW(CFS) = 32.32 BOX-FLOW TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 20.29 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 114.00 = 2982.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 114.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.29 RAINFALL INTENSITY(INCH/HR) = 1.29 AREA-AVERAGED Fm(INCH/HR) = 0.29 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.80 EFFECTIVE STREAM AREA(ACRES) = 33.54 TOTAL STREAM AREA(ACRES) = 59.73 PEAK FLOW RATE(CFS) AT CONFLUENCE = 32.32 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 152.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ============================================================================ INITIAL SUBAREA FLOW-LENGTH(FEET) = 833.00 ELEVATION DATA: UPSTREAM(FEET) = 470.40 DOWNSTREAM(FEET) = 429.40 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.179 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.337 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL B 0.69 0.36 0.100 80 8.18 PUBLIC PARK B 1.57 0.36 0.850 80 13.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.621 SUBAREA RUNOFF(CFS) = 4.29 TOTAL AREA(ACRES) = 2.26 PEAK FLOW RATE(CFS) = 4.29 **************************************************************************** FLOW PROCESS FROM NODE 152.00 TO NODE 154.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.40 DOWNSTREAM(FEET) = 428.10 CHANNEL LENGTH THRU SUBAREA(FEET) = 823.00 CHANNEL SLOPE = 0.0016 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.661 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.81 0.36 0.100 80 PUBLIC PARK B 1.22 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.551 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.64 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.42 AVERAGE FLOW DEPTH(FEET) = 1.08 TRAVEL TIME(MIN.) = 5.66 Tc(MIN.) = 13.84 SUBAREA AREA(ACRES) = 2.03 SUBAREA RUNOFF(CFS) = 2.67 EFFECTIVE AREA(ACRES) = 4.29 AREA-AVERAGED Fm(INCH/HR) = 0.21 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.59 TOTAL AREA(ACRES) = 4.3 PEAK FLOW RATE(CFS) = 5.59 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.07 FLOW VELOCITY(FEET/SEC.) = 2.43 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 154.00 = 1656.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 154.00 TO NODE 114.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 428.10 DOWNSTREAM(FEET) = 427.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 220.00 CHANNEL SLOPE = 0.0023 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.566 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL B 0.37 0.36 0.100 80 PUBLIC PARK B 0.35 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.465 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.04 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.82 AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 15.14 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 0.91 EFFECTIVE AREA(ACRES) = 5.01 AREA-AVERAGED Fm(INCH/HR) = 0.21 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.57 TOTAL AREA(ACRES) = 5.0 PEAK FLOW RATE(CFS) = 6.13 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.04 FLOW VELOCITY(FEET/SEC.) = 2.83 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 114.00 = 1876.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 154.00 TO NODE 114.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.14 RAINFALL INTENSITY(INCH/HR) = 1.57 AREA-AVERAGED Fm(INCH/HR) = 0.21 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.57 EFFECTIVE STREAM AREA(ACRES) = 5.01 TOTAL STREAM AREA(ACRES) = 5.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.13 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 32.32 20.29 1.295 0.36( 0.29) 0.80 33.5 130.00 2 6.13 15.14 1.566 0.36( 0.21) 0.57 5.0 150.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 37.23 Tc(MIN.) = 20.29 EFFECTIVE AREA(ACRES) = 38.55 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.77 TOTAL AREA(ACRES) = 64.7 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 114.00 = 2982.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 427.60 DOWNSTREAM(FEET) = 418.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 90.00 CHANNEL SLOPE = 0.0967 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.291 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK B 2.56 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 38.36 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 16.28 AVERAGE FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 20.38 SUBAREA AREA(ACRES) = 2.56 SUBAREA RUNOFF(CFS) = 2.26 EFFECTIVE AREA(ACRES) = 41.11 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.77 TOTAL AREA(ACRES) = 67.3 PEAK FLOW RATE(CFS) = 37.36 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.47 FLOW VELOCITY(FEET/SEC.) = 16.16 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 116.00 = 3072.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 162.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ============================================================================ INITIAL SUBAREA FLOW-LENGTH(FEET) = 252.00 ELEVATION DATA: UPSTREAM(FEET) = 432.00 DOWNSTREAM(FEET) = 431.70 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 16.958 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.455 SUBAREA Tc AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) PUBLIC PARK B 0.34 0.36 0.850 80 16.96 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF(CFS) = 0.35 TOTAL AREA(ACRES) = 0.34 PEAK FLOW RATE(CFS) = 0.35 **************************************************************************** FLOW PROCESS FROM NODE 162.00 TO NODE 164.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 431.70 DOWNSTREAM(FEET) = 429.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 971.00 CHANNEL SLOPE = 0.0028 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 1.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 0.828 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK B 5.38 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.73 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.69 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 23.42 Tc(MIN.) = 40.38 SUBAREA AREA(ACRES) = 5.38 SUBAREA RUNOFF(CFS) = 2.51 EFFECTIVE AREA(ACRES) = 5.72 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 5.7 PEAK FLOW RATE(CFS) = 2.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.41 FLOW VELOCITY(FEET/SEC.) = 0.78 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 164.00 = 1223.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 164.00 TO NODE 166.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.00 DOWNSTREAM(FEET) = 427.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 680.00 CHANNEL SLOPE = 0.0016 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 0.663 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK B 5.59 0.36 0.850 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.57 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.69 AVERAGE FLOW DEPTH(FEET) = 0.51 TRAVEL TIME(MIN.) = 16.42 Tc(MIN.) = 56.80 SUBAREA AREA(ACRES) = 5.59 SUBAREA RUNOFF(CFS) = 1.78 EFFECTIVE AREA(ACRES) = 11.31 AREA-AVERAGED Fm(INCH/HR) = 0.31 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 11.3 PEAK FLOW RATE(CFS) = 3.60 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.51 FLOW VELOCITY(FEET/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 166.00 = 1903.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 166.00 TO NODE 116.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 166.00 TO NODE 116.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.60 56.80 0.663 0.36( 0.31) 0.85 11.3 160.00 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 116.00 = 1903.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 37.36 20.38 1.291 0.36( 0.28) 0.77 41.1 102.00 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 116.00 = 3072.10 FEET. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 39.81 Tc(MIN.) = 20.385 EFFECTIVE AREA(ACRES) = 43.88 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.78 TOTAL AREA(ACRES) = 78.6 LONGEST FLOWPATH FROM NODE 102.00 TO NODE 116.00 = 3072.10 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 78.6 TC(MIN.) = 20.38 EFFECTIVE AREA(ACRES) = 43.88 AREA-AVERAGED Fm(INCH/HR)= 0.28 AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 0.778 PEAK FLOW RATE(CFS) = 39.81 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS 12 APPENDIX C U N I T H Y D R O G R A P H A N A L Y S I S Copyright (c) CIVILCADD/CIVILDESIGN, 1990 - 2004, Version 7.0 Study date 09/16/09 File: 210UHR6EX.out +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Program License Serial Number 6197 --------------------------------------------------------------------- HAGEMAN FLYOVER 2 X 10 YEAR 24hour Storms EXISTING CONDITIONS-ORIGINAL BASIN Flow to Basin R6 (File:210uhr6EX) --------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Storm Event Year = 10 Antecedent Moisture Condition = 2 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used Area averaged rainfall isohyetal data: Sub-Area(Ac.) Rainfall (In) 9.43 3.74 Rainfall Distribution pattern used in study: Type II for United States -------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ********* Area-Averaged SCS Curve Number and Fm ********* Area Area SCS CN SCS CN Fm Soil (Ac.) fract (AMC2) (AMC2) (In/Hr) Group 2.63 0.279 61.0 61.0 0.050 B 0.46 0.049 98.0 98.0 0.63 0.067 61.0 61.0 0.050 B 5.71 0.605 98.0 98.0 Area-averaged catchment SCS Curve Number AMC(2) = 85.207 Area-averaged Fm value using values listed = 0.017(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++User entry of time of concentration = 0.181 (hours) Watershed area = 9.43(Ac.) Catchment Lag time = 0.109 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 76.7342 Hydrograph baseflow = 0.00(CFS) Minimum watershed loss rate(Fm) = 0.027(In/Hr) Average adjusted SCS Curve Number = 85.207 Rainfall depth area reduction factors: Using a total area of 9.43(Ac.) (Ref: SCS Sup A, Sec.4) Pacific Coastal Climate ratio used Areal factor ratio (rainfall reduction) = 1.000 Rainfall entered for study = 3.740(In) Adjusted rainfall = 3.740(In) The following S-Graph or S-Graph combination is used in this study: VALLEY DEVELOPED S-Graph U N I T H Y D R O G R A P H +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Time Ratio Time Discharge Q Mass Curve (t/Lag) (hrs) Ratios (CFS) Ratios (Q/Qp) (Qa/Q) (K = 114.10 (CFS)) --------------------------------------------------------------------- 0.77 0.083 0.209 11.925 0.105 1.53 0.167 1.000 57.155 0.605 2.30 0.250 0.643 36.760 0.928 3.07 0.333 0.117 6.680 0.986 3.84 0.417 0.028 1.584 1.000 -------------------------------------------------------------------- -------------------------------------------------------------------- Total soil rain loss = 1.67(In) Total effective runoff = 2.07(In) --------------------------------------------------------------------- Peak flow rate this hydrograph = 18.38(CFS) Total runoff volume this hydrograph = 70727.1(Ft3) --------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 5.0 10.0 15.0 20.0 ----------------------------------------------------------------------- 0+ 5 0.0000 0.00 Q | | | | 0+10 0.0000 0.00 Q | | | | 0+15 0.0000 0.00 Q | | | | 0+20 0.0000 0.00 Q | | | | 0+25 0.0000 0.00 Q | | | | 0+30 0.0000 0.00 Q | | | | 0+35 0.0000 0.00 Q | | | | 0+40 0.0000 0.00 Q | | | | 0+45 0.0000 0.00 Q | | | | 0+50 0.0000 0.00 Q | | | | 0+55 0.0000 0.00 Q | | | | 1+ 0 0.0000 0.00 Q | | | | 1+ 5 0.0000 0.00 Q | | | | 1+10 0.0000 0.00 Q | | | | 1+15 0.0000 0.00 Q | | | | 1+20 0.0000 0.00 Q | | | | 1+25 0.0000 0.00 Q | | | | 1+30 0.0000 0.00 Q | | | | 1+35 0.0000 0.00 Q | | | | 1+40 0.0000 0.00 Q | | | | 1+45 0.0000 0.00 Q | | | | 1+50 0.0000 0.00 Q | | | | 1+55 0.0000 0.00 Q | | | | 2+ 0 0.0000 0.00 Q | | | | 2+ 5 0.0000 0.00 Q | | | | 2+10 0.0000 0.00 Q | | | | 2+15 0.0000 0.00 Q | | | | 2+20 0.0000 0.00 Q | | | | 2+25 0.0000 0.00 Q | | | | 2+30 0.0000 0.00 Q | | | | 2+35 0.0000 0.00 Q | | | | 2+40 0.0000 0.00 Q | | | | 2+45 0.0000 0.00 Q | | | | 2+50 0.0000 0.00 Q | | | | 2+55 0.0000 0.00 Q | | | | 3+ 0 0.0000 0.00 Q | | | | 3+ 5 0.0000 0.00 Q | | | | 3+10 0.0000 0.00 Q | | | | 3+15 0.0000 0.00 Q | | | | 3+20 0.0000 0.00 Q | | | | 3+25 0.0000 0.00 Q | | | | 3+30 0.0000 0.00 Q | | | | 3+35 0.0000 0.00 Q | | | | 3+40 0.0000 0.00 Q | | | | 3+45 0.0000 0.00 Q | | | | 3+50 0.0000 0.00 Q | | | | 3+55 0.0000 0.00 Q | | | | 4+ 0 0.0000 0.00 Q | | | | 4+ 5 0.0000 0.00 Q | | | | 4+10 0.0000 0.00 Q | | | | 4+15 0.0000 0.00 Q | | | | 4+20 0.0000 0.00 Q | | | | 4+25 0.0000 0.00 Q | | | | 4+30 0.0000 0.00 Q | | | | 4+35 0.0000 0.00 Q | | | | 4+40 0.0000 0.00 Q | | | | 4+45 0.0000 0.00 Q | | | | 4+50 0.0000 0.00 Q | | | | 4+55 0.0000 0.00 Q | | | | 5+ 0 0.0000 0.00 Q | | | | 5+ 5 0.0000 0.00 Q | | | | 5+10 0.0000 0.00 Q | | | | 5+15 0.0000 0.00 Q | | | | 5+20 0.0000 0.00 Q | | | | 5+25 0.0000 0.00 Q | | | | 5+30 0.0000 0.00 Q | | | | 5+35 0.0000 0.00 Q | | | | 5+40 0.0000 0.00 Q | | | | 5+45 0.0000 0.00 Q | | | | 5+50 0.0000 0.00 Q | | | | 5+55 0.0000 0.00 Q | | | | 6+ 0 0.0000 0.00 Q | | | | 6+ 5 0.0000 0.00 Q | | | | 6+10 0.0000 0.00 Q | | | | 6+15 0.0000 0.00 Q | | | | 6+20 0.0000 0.00 Q | | | | 6+25 0.0000 0.00 Q | | | | 6+30 0.0000 0.00 Q | | | | 6+35 0.0000 0.00 Q | | | | 6+40 0.0000 0.00 Q | | | | 6+45 0.0000 0.00 Q | | | | 6+50 0.0000 0.00 Q | | | | 6+55 0.0001 0.01 Q | | | | 7+ 0 0.0001 0.01 Q | | | | 7+ 5 0.0003 0.02 Q | | | | 7+10 0.0004 0.02 Q | | | | 7+15 0.0006 0.03 Q | | | | 7+20 0.0008 0.03 Q | | | | 7+25 0.0011 0.04 Q | | | | 7+30 0.0014 0.04 Q | | | | 7+35 0.0017 0.05 Q | | | | 7+40 0.0021 0.06 Q | | | | 7+45 0.0026 0.07 Q | | | | 7+50 0.0032 0.08 Q | | | | 7+55 0.0038 0.09 Q | | | | 8+ 0 0.0044 0.10 Q | | | | 8+ 5 0.0051 0.10 Q | | | | 8+10 0.0057 0.09 Q | | | | 8+15 0.0063 0.08 Q | | | | 8+20 0.0069 0.08 Q | | | | 8+25 0.0075 0.09 Q | | | | 8+30 0.0081 0.09 Q | | | | 8+35 0.0087 0.10 Q | | | | 8+40 0.0096 0.12 Q | | | | 8+45 0.0106 0.14 Q | | | | 8+50 0.0116 0.15 Q | | | | 8+55 0.0127 0.16 Q | | | | 9+ 0 0.0139 0.17 Q | | | | 9+ 5 0.0151 0.18 Q | | | | 9+10 0.0166 0.22 Q | | | | 9+15 0.0184 0.25 Q | | | | 9+20 0.0202 0.27 Q | | | | 9+25 0.0222 0.28 Q | | | | 9+30 0.0242 0.29 Q | | | | 9+35 0.0263 0.30 Q | | | | 9+40 0.0284 0.30 Q | | | | 9+45 0.0305 0.31 Q | | | | 9+50 0.0327 0.32 Q | | | | 9+55 0.0349 0.33 Q | | | | 10+ 0 0.0372 0.34 Q | | | | 10+ 5 0.0398 0.37 Q | | | | 10+10 0.0434 0.52 |Q | | | | 10+15 0.0478 0.63 |Q | | | | 10+20 0.0524 0.67 |Q | | | | 10+25 0.0573 0.70 |Q | | | | 10+30 0.0623 0.73 |Q | | | | 10+35 0.0673 0.73 |Q | | | | 10+40 0.0718 0.65 |Q | | | | 10+45 0.0759 0.60 |Q | | | | 10+50 0.0800 0.60 |Q | | | | 10+55 0.0841 0.61 |QV | | | | 11+ 0 0.0884 0.62 |QV | | | | 11+ 5 0.0937 0.77 |QV | | | | 11+10 0.1039 1.49 | Q | | | | 11+15 0.1177 2.00 | VQ | | | | 11+20 0.1326 2.17 | VQ | | | | 11+25 0.1483 2.28 | VQ | | | | 11+30 0.1646 2.37 | Q | | | | 11+35 0.1897 3.64 | V Q | | | | 11+40 0.2557 9.58 | V | Q| | | 11+45 0.3537 14.23 | V | | Q | | 11+50 0.4651 16.18 | |V | | Q | 11+55 0.5853 17.45 | | V | | Q | 12+ 0 0.7119 18.38 | | V | | Q | 12+ 5 0.8330 17.58 | | V | Q | 12+10 0.9064 10.66 | | |QV | | 12+15 0.9485 6.10 | | Q | V | | 12+20 0.9850 5.30 | Q | V | | 12+25 1.0203 5.13 | Q | V | | 12+30 1.0559 5.17 | Q | V | | 12+35 1.0894 4.87 | Q| | V | | 12+40 1.1124 3.33 | Q | | V | | 12+45 1.1285 2.34 | Q | | V | | 12+50 1.1434 2.17 | Q | | V | | 12+55 1.1581 2.13 | Q | | V | | 13+ 0 1.1728 2.13 | Q | | V | | 13+ 5 1.1870 2.07 | Q | | V| | 13+10 1.1990 1.74 | Q | | V| | 13+15 1.2096 1.54 | Q | | V| | 13+20 1.2199 1.50 | Q | | V | 13+25 1.2302 1.49 | Q | | V | 13+30 1.2405 1.50 | Q | | V | 13+35 1.2506 1.46 | Q | | V | 13+40 1.2595 1.30 | Q | | |V | 13+45 1.2678 1.19 | Q | | |V | 13+50 1.2759 1.17 | Q | | |V | 13+55 1.2839 1.17 | Q | | |V | 14+ 0 1.2920 1.17 | Q | | |V | 14+ 5 1.3000 1.17 | Q | | | V | 14+10 1.3081 1.17 | Q | | | V | 14+15 1.3162 1.17 | Q | | | V | 14+20 1.3242 1.17 | Q | | | V | 14+25 1.3323 1.17 | Q | | | V | 14+30 1.3403 1.17 | Q | | | V | 14+35 1.3479 1.10 | Q | | | V | 14+40 1.3533 0.78 |Q | | | V | 14+45 1.3573 0.58 |Q | | | V | 14+50 1.3610 0.54 |Q | | | V | 14+55 1.3647 0.53 |Q | | | V | 15+ 0 1.3683 0.53 |Q | | | V | 15+ 5 1.3720 0.54 |Q | | | V | 15+10 1.3760 0.57 |Q | | | V | 15+15 1.3801 0.60 |Q | | | V | 15+20 1.3842 0.60 |Q | | | V | 15+25 1.3883 0.60 |Q | | | V | 15+30 1.3925 0.60 |Q | | | V | 15+35 1.3968 0.63 |Q | | | V | 15+40 1.4022 0.77 |Q | | | V | 15+45 1.4081 0.87 |Q | | | V | 15+50 1.4142 0.88 |Q | | | V | 15+55 1.4203 0.89 |Q | | | V | 16+ 0 1.4264 0.89 |Q | | | V | 16+ 5 1.4323 0.86 |Q | | | V | 16+10 1.4372 0.71 |Q | | | V | 16+15 1.4415 0.62 |Q | | | V | 16+20 1.4457 0.61 |Q | | | V | 16+25 1.4498 0.60 |Q | | | V | 16+30 1.4539 0.60 |Q | | | V | 16+35 1.4579 0.58 |Q | | | V | 16+40 1.4612 0.47 Q | | | V | 16+45 1.4640 0.40 Q | | | V | 16+50 1.4666 0.39 Q | | | V | 16+55 1.4693 0.39 Q | | | V | 17+ 0 1.4720 0.39 Q | | | V | 17+ 5 1.4748 0.41 Q | | | V | 17+10 1.4784 0.52 |Q | | | V | 17+15 1.4824 0.59 |Q | | | V | 17+20 1.4865 0.60 |Q | | | V | 17+25 1.4907 0.60 |Q | | | V | 17+30 1.4948 0.60 |Q | | | V | 17+35 1.4989 0.59 |Q | | | V | 17+40 1.5027 0.56 |Q | | | V | 17+45 1.5064 0.54 |Q | | | V | 17+50 1.5101 0.53 |Q | | | V | 17+55 1.5137 0.53 |Q | | | V | 18+ 0 1.5174 0.53 |Q | | | V | 18+ 5 1.5208 0.50 |Q | | | V | 18+10 1.5233 0.36 Q | | | V | 18+15 1.5251 0.27 Q | | | V | 18+20 1.5269 0.25 Q | | | V | 18+25 1.5286 0.25 Q | | | V | 18+30 1.5302 0.25 Q | | | V | 18+35 1.5318 0.23 Q | | | V | 18+40 1.5329 0.16 Q | | | V | 18+45 1.5337 0.11 Q | | | V | 18+50 1.5344 0.11 Q | | | V | 18+55 1.5352 0.10 Q | | | V | 19+ 0 1.5359 0.10 Q | | | V | 19+ 5 1.5368 0.14 Q | | | V | 19+10 1.5390 0.32 Q | | | V | 19+15 1.5420 0.43 Q | | | V | 19+20 1.5451 0.45 Q | | | V | 19+25 1.5483 0.46 Q | | | V | 19+30 1.5515 0.46 Q | | | V | 19+35 1.5544 0.43 Q | | | V | 19+40 1.5564 0.29 Q | | | V | 19+45 1.5577 0.20 Q | | | V | 19+50 1.5590 0.18 Q | | | V | 19+55 1.5602 0.17 Q | | | V | 20+ 0 1.5614 0.17 Q | | | V | 20+ 5 1.5627 0.19 Q | | | V | 20+10 1.5645 0.26 Q | | | V | 20+15 1.5666 0.31 Q | | | V | 20+20 1.5688 0.31 Q | | | V | 20+25 1.5709 0.32 Q | | | V | 20+30 1.5731 0.32 Q | | | V | 20+35 1.5755 0.35 Q | | | V | 20+40 1.5789 0.49 Q | | | V | 20+45 1.5829 0.58 |Q | | | V | 20+50 1.5870 0.60 |Q | | | V| 20+55 1.5911 0.60 |Q | | | V| 21+ 0 1.5953 0.60 |Q | | | V| 21+ 5 1.5990 0.55 |Q | | | V| 21+10 1.6011 0.30 Q | | | V| 21+15 1.6021 0.14 Q | | | V| 21+20 1.6028 0.11 Q | | | V| 21+25 1.6035 0.10 Q | | | V| 21+30 1.6043 0.10 Q | | | V| 21+35 1.6049 0.10 Q | | | V| 21+40 1.6053 0.06 Q | | | V| 21+45 1.6056 0.04 Q | | | V| 21+50 1.6058 0.03 Q | | | V| 21+55 1.6060 0.03 Q | | | V| 22+ 0 1.6063 0.03 Q | | | V| 22+ 5 1.6065 0.04 Q | | | V| 22+10 1.6071 0.08 Q | | | V| 22+15 1.6077 0.10 Q | | | V| 22+20 1.6084 0.10 Q | | | V| 22+25 1.6092 0.10 Q | | | V| 22+30 1.6099 0.10 Q | | | V| 22+35 1.6106 0.10 Q | | | V| 22+40 1.6113 0.10 Q | | | V| 22+45 1.6120 0.10 Q | | | V| 22+50 1.6127 0.10 Q | | | V| 22+55 1.6134 0.10 Q | | | V| 23+ 0 1.6141 0.10 Q | | | V| 23+ 5 1.6149 0.10 Q | | | V| 23+10 1.6156 0.10 Q | | | V| 23+15 1.6163 0.10 Q | | | V| 23+20 1.6170 0.10 Q | | | V| 23+25 1.6177 0.10 Q | | | V| 23+30 1.6184 0.10 Q | | | V| 23+35 1.6191 0.10 Q | | | V| 23+40 1.6198 0.10 Q | | | V| 23+45 1.6206 0.10 Q | | | V| 23+50 1.6213 0.10 Q | | | V| 23+55 1.6220 0.10 Q | | | V| 24+ 0 1.6227 0.10 Q | | | V| 24+ 5 1.6233 0.09 Q | | | V| 24+10 1.6236 0.04 Q | | | V| 24+15 1.6237 0.01 Q | | | V| 24+20 1.6237 0.00 Q | | | V ----------------------------------------------------------------------- U N I T H Y D R O G R A P H A N A L Y S I S Copyright (c) CIVILCADD/CIVILDESIGN, 1990 - 2004, Version 7.0 Study date 09/16/09 File: 210UHR5EX.out +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Program License Serial Number 6197 --------------------------------------------------------------------- HAGEMAN FLYOVER 2 X 10 YEAR 24hour Storms EXISTING CONDITIONS-ORIGINAL BASIN Flow to Basin R5 (File:210uhr5EX) --------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Storm Event Year = 10 Antecedent Moisture Condition = 2 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used Area averaged rainfall isohyetal data: Sub-Area(Ac.) Rainfall (In) 3.54 3.74 Rainfall Distribution pattern used in study: Type II for United States -------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ********* Area-Averaged SCS Curve Number and Fm ********* Area Area SCS CN SCS CN Fm Soil (Ac.) fract (AMC2) (AMC2) (In/Hr) Group 2.19 0.619 61.0 61.0 0.050 B 0.39 0.109 98.0 98.0 0.10 0.027 61.0 61.0 0.050 B 0.86 0.244 98.0 98.0 Area-averaged catchment SCS Curve Number AMC(2) = 74.075 Area-averaged Fm value using values listed = 0.032(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++User entry of time of concentration = 0.159 (hours) Watershed area = 3.54(Ac.) Catchment Lag time = 0.095 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 87.5166 Hydrograph baseflow = 0.00(CFS) Minimum watershed loss rate(Fm) = 0.027(In/Hr) Average adjusted SCS Curve Number = 74.075 Rainfall depth area reduction factors: Using a total area of 3.54(Ac.) (Ref: SCS Sup A, Sec.4) Pacific Coastal Climate ratio used Areal factor ratio (rainfall reduction) = 1.000 Rainfall entered for study = 3.740(In) Adjusted rainfall = 3.740(In) The following S-Graph or S-Graph combination is used in this study: VALLEY DEVELOPED S-Graph U N I T H Y D R O G R A P H +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Time Ratio Time Discharge Q Mass Curve (t/Lag) (hrs) Ratios (CFS) Ratios (Q/Qp) (Qa/Q) (K = 42.83 (CFS)) --------------------------------------------------------------------- 0.88 0.083 0.234 5.731 0.134 1.75 0.167 1.000 24.471 0.705 2.63 0.250 0.446 10.909 0.960 3.50 0.333 0.070 1.723 1.000 -------------------------------------------------------------------- -------------------------------------------------------------------- Total soil rain loss = 2.40(In) Total effective runoff = 1.34(In) --------------------------------------------------------------------- Peak flow rate this hydrograph = 4.48(CFS) Total runoff volume this hydrograph = 17187.8(Ft3) --------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+ 5 0.0000 0.00 Q | | | | 0+10 0.0000 0.00 Q | | | | 0+15 0.0000 0.00 Q | | | | 0+20 0.0000 0.00 Q | | | | 0+25 0.0000 0.00 Q | | | | 0+30 0.0000 0.00 Q | | | | 0+35 0.0000 0.00 Q | | | | 0+40 0.0000 0.00 Q | | | | 0+45 0.0000 0.00 Q | | | | 0+50 0.0000 0.00 Q | | | | 0+55 0.0000 0.00 Q | | | | 1+ 0 0.0000 0.00 Q | | | | 1+ 5 0.0000 0.00 Q | | | | 1+10 0.0000 0.00 Q | | | | 1+15 0.0000 0.00 Q | | | | 1+20 0.0000 0.00 Q | | | | 1+25 0.0000 0.00 Q | | | | 1+30 0.0000 0.00 Q | | | | 1+35 0.0000 0.00 Q | | | | 1+40 0.0000 0.00 Q | | | | 1+45 0.0000 0.00 Q | | | | 1+50 0.0000 0.00 Q | | | | 1+55 0.0000 0.00 Q | | | | 2+ 0 0.0000 0.00 Q | | | | 2+ 5 0.0000 0.00 Q | | | | 2+10 0.0000 0.00 Q | | | | 2+15 0.0000 0.00 Q | | | | 2+20 0.0000 0.00 Q | | | | 2+25 0.0000 0.00 Q | | | | 2+30 0.0000 0.00 Q | | | | 2+35 0.0000 0.00 Q | | | | 2+40 0.0000 0.00 Q | | | | 2+45 0.0000 0.00 Q | | | | 2+50 0.0000 0.00 Q | | | | 2+55 0.0000 0.00 Q | | | | 3+ 0 0.0000 0.00 Q | | | | 3+ 5 0.0000 0.00 Q | | | | 3+10 0.0000 0.00 Q | | | | 3+15 0.0000 0.00 Q | | | | 3+20 0.0000 0.00 Q | | | | 3+25 0.0000 0.00 Q | | | | 3+30 0.0000 0.00 Q | | | | 3+35 0.0000 0.00 Q | | | | 3+40 0.0000 0.00 Q | | | | 3+45 0.0000 0.00 Q | | | | 3+50 0.0000 0.00 Q | | | | 3+55 0.0000 0.00 Q | | | | 4+ 0 0.0000 0.00 Q | | | | 4+ 5 0.0000 0.00 Q | | | | 4+10 0.0000 0.00 Q | | | | 4+15 0.0000 0.00 Q | | | | 4+20 0.0000 0.00 Q | | | | 4+25 0.0000 0.00 Q | | | | 4+30 0.0000 0.00 Q | | | | 4+35 0.0000 0.00 Q | | | | 4+40 0.0000 0.00 Q | | | | 4+45 0.0000 0.00 Q | | | | 4+50 0.0000 0.00 Q | | | | 4+55 0.0000 0.00 Q | | | | 5+ 0 0.0000 0.00 Q | | | | 5+ 5 0.0000 0.00 Q | | | | 5+10 0.0000 0.00 Q | | | | 5+15 0.0000 0.00 Q | | | | 5+20 0.0000 0.00 Q | | | | 5+25 0.0000 0.00 Q | | | | 5+30 0.0000 0.00 Q | | | | 5+35 0.0000 0.00 Q | | | | 5+40 0.0000 0.00 Q | | | | 5+45 0.0000 0.00 Q | | | | 5+50 0.0000 0.00 Q | | | | 5+55 0.0000 0.00 Q | | | | 6+ 0 0.0000 0.00 Q | | | | 6+ 5 0.0000 0.00 Q | | | | 6+10 0.0000 0.00 Q | | | | 6+15 0.0000 0.00 Q | | | | 6+20 0.0000 0.00 Q | | | | 6+25 0.0000 0.00 Q | | | | 6+30 0.0000 0.00 Q | | | | 6+35 0.0000 0.00 Q | | | | 6+40 0.0000 0.00 Q | | | | 6+45 0.0000 0.00 Q | | | | 6+50 0.0000 0.00 Q | | | | 6+55 0.0000 0.00 Q | | | | 7+ 0 0.0000 0.00 Q | | | | 7+ 5 0.0000 0.00 Q | | | | 7+10 0.0000 0.00 Q | | | | 7+15 0.0000 0.00 Q | | | | 7+20 0.0000 0.00 Q | | | | 7+25 0.0000 0.00 Q | | | | 7+30 0.0000 0.00 Q | | | | 7+35 0.0000 0.00 Q | | | | 7+40 0.0000 0.00 Q | | | | 7+45 0.0000 0.00 Q | | | | 7+50 0.0000 0.00 Q | | | | 7+55 0.0000 0.00 Q | | | | 8+ 0 0.0000 0.00 Q | | | | 8+ 5 0.0000 0.00 Q | | | | 8+10 0.0000 0.00 Q | | | | 8+15 0.0000 0.00 Q | | | | 8+20 0.0000 0.00 Q | | | | 8+25 0.0000 0.00 Q | | | | 8+30 0.0000 0.00 Q | | | | 8+35 0.0000 0.00 Q | | | | 8+40 0.0000 0.00 Q | | | | 8+45 0.0000 0.00 Q | | | | 8+50 0.0000 0.00 Q | | | | 8+55 0.0000 0.00 Q | | | | 9+ 0 0.0000 0.00 Q | | | | 9+ 5 0.0000 0.00 Q | | | | 9+10 0.0000 0.00 Q | | | | 9+15 0.0000 0.00 Q | | | | 9+20 0.0000 0.00 Q | | | | 9+25 0.0000 0.00 Q | | | | 9+30 0.0000 0.00 Q | | | | 9+35 0.0000 0.00 Q | | | | 9+40 0.0000 0.00 Q | | | | 9+45 0.0000 0.00 Q | | | | 9+50 0.0000 0.00 Q | | | | 9+55 0.0000 0.00 Q | | | | 10+ 0 0.0000 0.00 Q | | | | 10+ 5 0.0000 0.00 Q | | | | 10+10 0.0000 0.00 Q | | | | 10+15 0.0000 0.00 Q | | | | 10+20 0.0001 0.01 Q | | | | 10+25 0.0002 0.02 Q | | | | 10+30 0.0003 0.02 Q | | | | 10+35 0.0006 0.03 Q | | | | 10+40 0.0008 0.03 Q | | | | 10+45 0.0010 0.03 Q | | | | 10+50 0.0013 0.04 Q | | | | 10+55 0.0015 0.04 Q | | | | 11+ 0 0.0019 0.05 Q | | | | 11+ 5 0.0023 0.07 Q | | | | 11+10 0.0033 0.15 Q | | | | 11+15 0.0048 0.21 Q | | | | 11+20 0.0065 0.25 Q | | | | 11+25 0.0084 0.28 VQ | | | | 11+30 0.0106 0.31 |Q | | | | 11+35 0.0147 0.60 |VQ | | | | 11+40 0.0272 1.82 | V Q | | | | 11+45 0.0465 2.80 | V |Q | | | 11+50 0.0704 3.47 | V | Q | | | 11+55 0.0980 4.01 | V| Q | | | 12+ 0 0.1288 4.48 | | V Q | | | 12+ 5 0.1588 4.36 | | VQ | | | 12+10 0.1753 2.39 | Q| V | | | 12+15 0.1855 1.49 | Q | V | | | 12+20 0.1949 1.36 | Q | V| | | 12+25 0.2044 1.38 | Q | V | | 12+30 0.2141 1.40 | Q | |V | | 12+35 0.2231 1.31 | Q | | V | | 12+40 0.2288 0.83 | Q | | V | | 12+45 0.2331 0.62 | Q | | V | | 12+50 0.2371 0.59 | Q | | V | | 12+55 0.2412 0.59 | Q | | V | | 13+ 0 0.2453 0.59 | Q | | V | | 13+ 5 0.2492 0.57 | Q | | V | | 13+10 0.2525 0.47 |Q | | V | | 13+15 0.2554 0.42 |Q | | V | | 13+20 0.2583 0.42 |Q | | V | | 13+25 0.2612 0.42 |Q | | V | | 13+30 0.2641 0.42 |Q | | V | | 13+35 0.2669 0.41 |Q | | V | | 13+40 0.2694 0.36 |Q | | V | | 13+45 0.2718 0.34 |Q | | V | | 13+50 0.2741 0.34 |Q | | V | | 13+55 0.2765 0.34 |Q | | V | | 14+ 0 0.2789 0.34 |Q | | V | | 14+ 5 0.2812 0.34 |Q | | V | | 14+10 0.2836 0.34 |Q | | V | | 14+15 0.2860 0.35 |Q | | V | | 14+20 0.2883 0.35 |Q | | V| | 14+25 0.2907 0.35 |Q | | V| | 14+30 0.2931 0.35 |Q | | V| | 14+35 0.2954 0.33 |Q | | V| | 14+40 0.2970 0.24 Q | | V | 14+45 0.2984 0.20 Q | | V | 14+50 0.2997 0.19 Q | | V | 14+55 0.3010 0.19 Q | | V | 15+ 0 0.3024 0.19 Q | | V | 15+ 5 0.3037 0.20 Q | | V | 15+10 0.3051 0.21 Q | | V | 15+15 0.3066 0.21 Q | | |V | 15+20 0.3080 0.21 Q | | |V | 15+25 0.3095 0.21 Q | | |V | 15+30 0.3109 0.21 Q | | |V | 15+35 0.3125 0.22 Q | | |V | 15+40 0.3143 0.26 |Q | | |V | 15+45 0.3162 0.28 |Q | | | V | 15+50 0.3182 0.28 |Q | | | V | 15+55 0.3201 0.28 |Q | | | V | 16+ 0 0.3221 0.29 |Q | | | V | 16+ 5 0.3240 0.28 |Q | | | V | 16+10 0.3256 0.24 Q | | | V | 16+15 0.3271 0.22 Q | | | V | 16+20 0.3286 0.22 Q | | | V | 16+25 0.3301 0.22 Q | | | V | 16+30 0.3316 0.22 Q | | | V | 16+35 0.3330 0.21 Q | | | V | 16+40 0.3341 0.17 Q | | | V | 16+45 0.3352 0.15 Q | | | V | 16+50 0.3362 0.15 Q | | | V | 16+55 0.3372 0.15 Q | | | V | 17+ 0 0.3382 0.15 Q | | | V | 17+ 5 0.3392 0.16 Q | | | V | 17+10 0.3406 0.20 Q | | | V | 17+15 0.3421 0.21 Q | | | V | 17+20 0.3436 0.22 Q | | | V | 17+25 0.3451 0.22 Q | | | V | 17+30 0.3466 0.22 Q | | | V | 17+35 0.3481 0.22 Q | | | V | 17+40 0.3495 0.20 Q | | | V | 17+45 0.3508 0.20 Q | | | V | 17+50 0.3522 0.20 Q | | | V | 17+55 0.3536 0.20 Q | | | V | 18+ 0 0.3550 0.20 Q | | | V | 18+ 5 0.3562 0.18 Q | | | V | 18+10 0.3571 0.12 Q | | | V | 18+15 0.3577 0.10 Q | | | V | 18+20 0.3584 0.09 Q | | | V | 18+25 0.3590 0.09 Q | | | V | 18+30 0.3597 0.09 Q | | | V | 18+35 0.3602 0.09 Q | | | V | 18+40 0.3606 0.05 Q | | | V | 18+45 0.3609 0.04 Q | | | V | 18+50 0.3612 0.04 Q | | | V | 18+55 0.3614 0.04 Q | | | V | 19+ 0 0.3617 0.04 Q | | | V | 19+ 5 0.3621 0.06 Q | | | V | 19+10 0.3630 0.13 Q | | | V | 19+15 0.3642 0.17 Q | | | V | 19+20 0.3653 0.17 Q | | | V | 19+25 0.3665 0.17 Q | | | V | 19+30 0.3677 0.17 Q | | | V | 19+35 0.3688 0.16 Q | | | V | 19+40 0.3695 0.10 Q | | | V | 19+45 0.3700 0.07 Q | | | V | 19+50 0.3704 0.07 Q | | | V | 19+55 0.3709 0.07 Q | | | V | 20+ 0 0.3713 0.07 Q | | | V | 20+ 5 0.3718 0.07 Q | | | V | 20+10 0.3725 0.10 Q | | | V | 20+15 0.3733 0.12 Q | | | V | 20+20 0.3741 0.12 Q | | | V | 20+25 0.3750 0.12 Q | | | V | 20+30 0.3758 0.12 Q | | | V | 20+35 0.3767 0.13 Q | | | V | 20+40 0.3780 0.19 Q | | | V | 20+45 0.3795 0.22 Q | | | V | 20+50 0.3811 0.22 Q | | | V | 20+55 0.3826 0.22 Q | | | V | 21+ 0 0.3842 0.23 Q | | | V | 21+ 5 0.3856 0.20 Q | | | V| 21+10 0.3862 0.09 Q | | | V| 21+15 0.3865 0.05 Q | | | V| 21+20 0.3868 0.04 Q | | | V| 21+25 0.3871 0.04 Q | | | V| 21+30 0.3873 0.04 Q | | | V| 21+35 0.3876 0.04 Q | | | V| 21+40 0.3877 0.02 Q | | | V| 21+45 0.3878 0.01 Q | | | V| 21+50 0.3879 0.01 Q | | | V| 21+55 0.3880 0.01 Q | | | V| 22+ 0 0.3881 0.01 Q | | | V| 22+ 5 0.3882 0.02 Q | | | V| 22+10 0.3884 0.03 Q | | | V| 22+15 0.3886 0.04 Q | | | V| 22+20 0.3889 0.04 Q | | | V| 22+25 0.3892 0.04 Q | | | V| 22+30 0.3894 0.04 Q | | | V| 22+35 0.3897 0.04 Q | | | V| 22+40 0.3900 0.04 Q | | | V| 22+45 0.3902 0.04 Q | | | V| 22+50 0.3905 0.04 Q | | | V| 22+55 0.3908 0.04 Q | | | V| 23+ 0 0.3910 0.04 Q | | | V| 23+ 5 0.3913 0.04 Q | | | V| 23+10 0.3916 0.04 Q | | | V| 23+15 0.3918 0.04 Q | | | V| 23+20 0.3921 0.04 Q | | | V| 23+25 0.3924 0.04 Q | | | V| 23+30 0.3927 0.04 Q | | | V| 23+35 0.3929 0.04 Q | | | V| 23+40 0.3932 0.04 Q | | | V| 23+45 0.3935 0.04 Q | | | V| 23+50 0.3937 0.04 Q | | | V| 23+55 0.3940 0.04 Q | | | V| 24+ 0 0.3943 0.04 Q | | | V| 24+ 5 0.3945 0.03 Q | | | V| 24+10 0.3946 0.01 Q | | | V| 24+15 0.3946 0.00 Q | | | V ----------------------------------------------------------------------- 13 APPENDIX D Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)393.0 680 394.0 33,374 17,027 1.00 17,027 630.63 17,027 631 0.39395.0 40,801 37,088 1.00 37,088 1,373.61 54,115 2,004 1.24396.0 43,108 41,955 1.00 41,955 1,553.87 96,069 3,558 2.21397.0 45,415 44,262 1.00 44,262 1,639.31 140,331 5,197 3.22398.0 47,722 46,569 1.00 46,569 1,724.76 186,899 6,922 4.29399.0 50,029 48,876 1.00 48,876 1,810.20 235,775 8,732 5.41400.0 52,336 51,183 1.00 51,183 1,895.65 286,957 10,628 6.59401.0 56,336 54,336 1.00 54,336 2,012.44 341,293 12,640 7.84Differential CumulativeVolume Volume Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)395.3 30 396.0 2,004 1,017 0.70 712 26.37 712 26 0.02397.0 6,930 4,467 1.00 4,467 165.44 5,179 192 0.12398.0 10,640 8,785 1.00 8,785 325.37 13,964 517 0.32399.0 14,350 12,495 1.00 12,495 462.78 26,459 980 0.61400.0 18,060 16,205 1.00 16,205 600.19 42,664 1,580 0.98401.0 22,021 20,041 1.00 20,041 742.24 62,704 2,322 1.44402.0 25,466 23,744 1.00 23,744 879.39 86,448 3,202 1.98403.0 28,911 27,189 1.00 27,189 1,006.98 113,636 4,209 2.61404.0 32,356 30,634 1.00 30,634 1,134.57 144,270 5,343 3.31405.0 36,260 34,308 1.00 34,308 1,270.67 178,578 6,614 4.10406.0 39,650 37,955 1.00 37,955 1,405.74 216,533 8,020 4.97Differential CumulativeVolume Volume Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)395.4 140 396.0 5,203 2,672 0.60 1,603 59.37 1,603 59 0.04397.0 11,733 8,468 1.00 8,468 313.63 10,071 373 0.23398.0 14,249 12,991 1.00 12,991 481.15 23,062 854 0.53399.0 16,027 15,138 1.00 15,138 560.67 38,200 1,415 0.88400.0 17,805 16,916 1.00 16,916 626.52 55,116 2,041 1.27401.0 19,273 18,539 1.00 18,539 686.63 73,655 2,728 1.69402.0 20,741 20,007 1.00 20,007 741.00 93,662 3,469 2.15403.0 22,209 21,475 1.00 21,475 795.37 115,137 4,264 2.64404.0 23,677 22,943 1.00 22,943 849.74 138,080 5,114 3.17405.0 25,144 24,411 1.00 24,411 904.09 162,490 6,018 3.73406.0 29,264 27,204 1.00 27,204 1,007.56 189,694 7,026 4.35Differential CumulativeVolume Volume Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)418.9 33,366 419.9 34,918 34,142 1.00 34,142 1,264.52 34,142 1,265 0.78420.9 36,503 35,711 1.00 35,711 1,322.61 69,853 2,587 1.60421.9 38,120 37,312 1.00 37,312 1,381.91 107,164 3,969 2.46422.939,768 38,944 1.00 38,944 1,442.37 146,108 5,411 3.35423.9 41,448 40,608 1.00 40,608 1,504.00 186,716 6,915 4.29424.9 43,161 42,305 1.00 42,305 1,566.83 229,021 8,482 5.26425.9 44,906 44,034 1.00 44,034 1,630.87 273,054 10,113 6.27426.946,682 45,794 1.00 45,794 1,696.07 318,848 11,809 7.32427.9 48,491 47,587 1.00 47,587 1,762.46 366,435 13,572 8.41CumulativeVolumeDifferentialVolume Hageman Flyover - Proposed Regional Basin A KER-99-PM Volume Calculations Bottom Elevation = 418.9 PROVIDED Total Volume @ 8 ft = 7.3 AC FT Elevation Area Average Differential Area Depth (ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft) (cu.yds) (acre-ft) 418.9 33,366 419.9 34,918 34,142 1.00 34,142 1,264.52 34,142 1,265 0.78 420.9 36,503 35,711 1.00 35,711 1,322.61 69,853 2,587 1.60 421.9 38,120 37,312 1.00 37,312 1,381.91 107,164 3,969 2.46422.9 39,768 38,944 1.00 38,944 1,442.37 146,108 5,411 3.35 423.9 41,448 40,608 1.00 40,608 1,504.00 186,716 6,915 4.29 424.9 43,161 42,305 1.00 42,305 1,566.83 229,021 8,482 5.26 425.9 44,906 44,034 1.00 44,034 1,630.87 273,054 10,113 6.27 426.9 46,682 45,794 1.00 45,794 1,696.07 318,848 11,809 7.32 427.9 48,491 47,587 1.00 47,587 1,762.46 366,435 13,572 8.41 Cumulative Volume Differential Volume Q:\BAKR0701 - Hageman Flyover\Drainage\Retention Basins\Proposed Regional Basin A.xls Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)393.0 54,209 394.0 57,412 55,811 1.00 55,811 2,067.06 55,811 2,067 1.28395.0 59,193 58,303 1.00 58,303 2,159.35 114,113 4,226 2.62396.060,998 60,096 1.00 60,096 2,225.76 174,209 6,452 4.00397.0 62,831 61,915 1.00 61,915 2,293.13 236,123 8,745 5.42398.0 66,020 64,426 1.00 64,426 2,386.13 300,549 11,131 6.90400.0 71,518 68,769 2.00 137,538 5,094.00 438,087 16,225 10.06401.0 73,280 72,399 1.00 72,399 2,681.44 510,486 18,907 11.72Differential CumulativeVolume Volume Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)395.5 7,204 396.0 7,589 7,397 0.50 3,698 136.97 3,698 137 0.08397.0 8,242 7,916 1.00 7,916 293.17 11,614 430 0.27398.0 9,636 8,939 1.00 8,939 331.07 20,553 761 0.47398.510,289 9,963 0.50 4,981 184.49 25,534 946 0.59400.0 11,820 11,055 1.50 16,582 614.14 42,116 1,560 0.97405.0 17,626 14,723 5.00 73,615 2,726.48 115,731 4,286 2.66406.0 20,074 18,850 1.00 18,850 698.15 134,581 4,984 3.09Differential CumulativeVolume Volume Elevation Area Average DifferentialArea Depth(ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft)(cu.yds) (acre-ft)395.5 36,490 396.0 37,478 36,984 0.50 18,492 684.89 18,492 685 0.42397.0 39,470 38,474 1.00 38,474 1,424.96 56,966 2,110 1.31398.0 41,488 40,479 1.00 40,479 1,499.22 97,445 3,609 2.24398.542,507 41,998 0.50 20,999 777.73 118,444 4,387 2.72400.0 47,726 45,117 1.50 67,675 2,506.47 186,119 6,893 4.27405.0 59,896 53,811 5.00 269,055 9,965.00 455,174 16,858 10.45406.0 62,119 61,008 1.00 61,008 2,259.54 516,181 19,118 11.85Differential CumulativeVolume Volume Hageman Flyover - Proposed Retention Basins KER-99-PM PHASE: PA&ED-Drainage Report AREA and BASIN Area (Acres) Proposed Runoff Volume (Ac Ft.) Proposed Basin Volume (Ac Ft.) Depth of water @ proposed design volume Bottom Elevation (Ft.) Water Elevation @ proposed design Max. depth of water allowed by Basin Volume @ Max. depth of waterArea A - Basin A 78.60 6.15 6.15 6.88 418.9 425.78 8.0 7.32 Area E - Basin R3 21.30 3.44 3.44 2.60 393.0 395.60 3.0 4.00 Area F - Basin R6 8.74 1.60 0.53 2.75 395.5 398.25 3.0 0.59 Area G - Basin R5 7.92 1.40 2.47 2.75 395.5 398.25 3.0 2.72 Hageman Flyover - Proposed Regional Basin A PROVIDED Total Volume @ 8 ft = 7.32 AC FT Elevation Area Average Differential Cumulative Area Depth Depth (ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft) (cu.yds) (acre-ft) (ft.) 418.9 33,366 419.9 34,918 34,142 1.00 34,142 1,264.52 34,142 1,265 0.78 1.00 420.9 36,503 35,711 1.00 35,711 1,322.61 69,853 2,587 1.60 2.00 421.9 38,120 37,312 1.00 37,312 1,381.91 107,164 3,969 2.46 3.00 422.9 39,768 38,944 1.00 38,944 1,442.37 146,108 5,411 3.35 4.00 423.9 41,448 40,608 1.00 40,608 1,504.00 186,716 6,915 4.29 5.00 424.9 43,161 42,305 1.00 42,305 1,566.83 229,021 8,482 5.26 6.00 425.78 44,730 43,946 0.88 38,672 1,432.30 267,693 9,915 6.15 6.88 425.9 44,906 44,818 0.12 5,378 199.19 273,071 10,114 6.27 7.00 426.9 46,682 45,794 1.00 45,794 1,696.07 318,865 11,810 7.32 8.00 427.9 48,491 47,587 1.00 47,587 1,762.46 366,451 13,572 8.41 9.00 Hageman Flyover - Existing Basin R3 PROVIDED Total Volume @ 3 ft = 4.0 AC FT Elevation Area Average Differential Cumulative Area Depth Depth (ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft) (cu.yds) (acre-ft) (ft.) 393 54,209 394 57,412 55,811 1.00 55,811 2,067.06 55,811 2,067 1.28 1.00 395 59,193 58,303 1.00 58,303 2,159.35 114,113 4,226 2.62 2.00 395.6 60,276 59,735 0.60 35,841 1,327.43 149,954 5,554 3.44 2.60 396 60,998 60,637 0.40 24,255 898.33 174,209 6,452 4.00 3.00 397 62,831 61,915 1.00 61,915 2,293.13 236,123 8,745 5.42 4.00 398 66,020 64,426 1.00 64,426 2,386.13 300,549 11,131 6.90 5.00 400 71,518 68,769 2.00 137,538 5,094.00 438,087 16,225 10.06 7.00 401 73,280 72,399 1.00 72,399 2,681.44 510,486 18,907 11.72 8.00 Hageman Flyover - Existing Basin R6 PROVIDED Total Volume @ 3 ft = 0.59 AC FT Elevation Area Average Differential Cumulative Area Depth Depth (ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft) (cu.yds) (acre-ft) (ft.) 395.5 7,204 396 7,589 7,397 0.50 3,698 136.97 3,698 137 0.08 0.50 397 8,242 7,916 1.00 7,916 293.17 11,614 430 0.27 1.50 398 9,636 8,939 1.00 8,939 331.07 20,553 761 0.47 2.50 398.25 9,963 9,800 0.25 2,450 90.74 23,003 852 0.53 2.75 398.5 10,289 10,126 0.25 2,532 93.76 25,534 946 0.59 3.00 400 11,820 11,055 1.50 16,582 614.14 42,116 1,560 0.97 4.50 405 17,626 14,723 5.00 73,615 2,726.48 115,731 4,286 2.66 9.50406 20,074 18,850 1.00 18,850 698.15 134,581 4,984 3.09 10.50 Hageman Flyover - Existing Basin R5 PROVIDED Total Volume @ 3 ft = 2.72 AC FT Elevation Area Average Differential Cumulative Area Depth Depth (ft) (sq. ft.) (sq. ft.) (ft.) (cu. Ft) (cu. Yds) (cu.ft) (cu.yds) (acre-ft) (ft.) 395.5 36,490 396 37,478 36,984 0.50 18,492 684.89 18,492 685 0.42 0.50 397 39,470 38,474 1.00 38,474 1,424.96 56,966 2,110 1.31 1.50 398 41,488 40,479 1.00 40,479 1,499.22 97,445 3,609 2.24 2.50 398.25 41,998 41,743 0.25 10,436 386.51 107,881 3,996 2.48 2.75 398.5 42,507 42,253 0.25 10,563 391.23 118,444 4,387 2.72 3.00 400 47,726 45,117 1.50 67,675 2,506.47 186,119 6,893 4.27 4.50 405 59,896 53,811 5.00 269,055 9,965.00 455,174 16,858 10.45 9.50 406 62,119 61,008 1.00 61,008 2,259.54 516,181 19,118 11.85 10.50 Basins R6 and R5 are connected thru an equilizer pipe (Elev=398.25) TABLE No. 2 Differential Cumulative Volume Volume Cumulative Volume Differential Volume Differential Volume Volume Cumulative Volume Volume Differential Cumulative Q:\BAKR0701 - Hageman Flyover\Drainage\Retention Basins\Proposed Retention Basins with Design Volume-SUMMARY .xls 14 APPENDIX E Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Channel Slope 0.15000 % Discharge 130.00 ft³/s Section Definitions Station (ft)Elevation (ft) 0+00 431.79 0+12 425.76 0+29 425.67 0+41 432.13 Roughness Segment Definitions Start Station Ending Station Roughness Coefficient (0+00, 431.79) (0+41, 432.13) 0.035 Results Normal Depth 2.46 ft Elevation Range 425.67 to 432.13 ft Flow Area 51.71 ft² Wetted Perimeter 27.36 ft Top Width 26.22 ft Normal Depth 2.46 ft Critical Depth 1.23 ft Critical Slope 0.01818 ft/ft Velocity 2.51 ft/s Velocity Head 0.10 ft Specific Energy 2.56 ft Froude Number 0.32 Flow Type Subcritical BEARDSLEY CANAL CHANNEL AT HAGEMAN ROAD STA 113+67.18 8/20/2009 4:30:37 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.46 ft Critical Depth 1.23 ft Channel Slope 0.00150 ft/ft Critical Slope 0.01818 ft/ft BEARDSLEY CANAL CHANNEL AT HAGEMAN ROAD STA 113+67.18 8/20/2009 4:30:37 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Channel Slope 0.15000 % Normal Depth 2.46 ft Discharge 130.00 ft³/s Cross Section Image BEARDSLEY CANAL CHANNEL AT HAGEMAN ROAD STA 113+67.18 8/20/2009 4:28:05 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Channel Slope 0.00150 ft/ft Height 6.00 ft Bottom Width 11.00 ft Discharge 65.00 ft³/s Results Normal Depth 1.42 ft Flow Area 15.63 ft² Wetted Perimeter 13.84 ft Top Width 11.00 ft Critical Depth 1.03 ft Percent Full 23.7 % Critical Slope 0.00408 ft/ft Velocity 4.16 ft/s Velocity Head 0.27 ft Specific Energy 1.69 ft Froude Number 0.62 Discharge Full 394.04 ft³/s Slope Full 0.05513 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 23.68 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Worksheet for Beardsley Canal-(2 x 6'x11' RCBox) 8/24/2009 4:14:53 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Normal Depth 1.42 ft Critical Depth 1.03 ft Channel Slope 0.00150 ft/ft Critical Slope 0.00408 ft/ft Worksheet for Beardsley Canal-(2 x 6'x11' RCBox) 8/24/2009 4:14:53 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Channel Slope 0.00150 ft/ft Normal Depth 1.42 ft Height 6.00 ft Bottom Width 11.00 ft Discharge 65.00 ft³/s Cross Section Image Cross Section for Beardsley Canal-(2 x 6'x11' RCBox) 8/24/2009 4:16:22 PM Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page 15 APPENDIX F 16 APPENDIX G